Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Приближенные числа и оценка их погрешностей
При численном решении задач приходится оперировать двумя видами чисел – точными и приближенными. К точным числам относятся числа, которые дают истинное значение исследуемой величины. К приближенным относятся числа, близкие к истинному значению, причем степень близости и определяется погрешностью вычислений. Результатами вычислений являются, как правило, только приближенные числа. Поэтому для указания области неопределенности результата вводятся некоторые специальные понятия, широко используемые при подготовке исходных данных или (и) оценке погрешности численных решений. Если х – точное, вообще говоря, неизвестное значение некоторой величины, а а – его приближение, то разность х – а называется ошибкой, или погрешностью приближения. Часто знак ошибки х – а неизвестен, поэтому используется так называемая абсолютная погрешность D(Х) приближенного числа а, определяемая равенством D(Х) = | х – а |, (1) откуда имеем х = а ± D(Х). (2) Изучаемая числовая величина х именованная, т.е. определяется в соответствующих единицах измерения, например, в сантиметрах, килограммах и т.п. Погрешность (1) имеет ту же размерность. Однако часто возникает необходимость заменить эту погрешность безразмерной величиной – относительной погрешностью. При этом из-за незнания точного значения изучаемой величины принято называть относительной погрешностью величину . (3) Относительную погрешность часто выражают в процентах: × 100%. Это погрешность на единицу измеряемой физической величины. Она сопоставима в идентичных экспериментах, т.е. характеризует качество измерения. А именно, точность результата лучше характеризуется его d(Х), так как абсолютная погрешность D(Х) не достаточна, к примеру, для характеристики качества измерения двух стержней l 1 = 100, 8 см ± 0, 1 см и l 2 = 5, 2 см ± 0, 1 см. Очевидно, что качество измерения первого значительно выше. В связи с тем, что точное значение х, как правило, неизвестно, то формулы (1)–(3) носят сугубо теоретический характер. Для практических целей вводится понятие предельной погрешности. Предельная абсолютная погрешность D а – это верхняя оценка модуля абсолютной погрешности числа х, т.е. | D х | £ D a. При произвольном выборе, D а всегда стремятся каким-либо образом взять наименьшим. Истинное значение числа х будет находиться в интервале с границами (а – D а) – с недостатком и (а + D а) – с избытком, т.е. (а – D а) £ х £ (а + D а). Условились для приближенных чисел по результатам округлений в качестве D а принимать единицу или 1/2 единицы оставленного разряда числа. Первое условие называют погрешностью в «широком» смысле, второе в «узком» смысле. Пример для второго условия:
Предельная относительная погрешность также может выражаться в процентах. При локальных ручных расчетах, и на этапе подготовки исходных данных существуют определенные правила оценки предельных погрешностей для арифметических операций (формулы – (4)): ; ; ; ; D(а ± D b) = D а + D b; D(а× b) = a× b [ d(а)+ d(b)] = b D а + a D b; ; ; где D – предельная абсолютная погрешность; d – относительная предельная погрешность; m – рациональное число. Следует отметить, что приведенные оценки погрешностей приближенных чисел справедливы, если в записи этих чисел все «значащие» цифры «верны». Определение этих понятий рассмотрим ниже.
|