Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Преобразования поворота в пространстве
Повороты в пространстве производятся вокруг осей. Рассмотрим повороты вокруг главных координатных осей. Положительными считаются повороты против часовой стрелки, если смотреть с конца положительной полуоси. Изученный нами ранее поворот относительно начала координат на плоскости XOY можно рассматривать как поворот в пространстве относительно оси Z. Для получения матриц поворота относительно других координатных осей можно использовать ту же схему рассуждений, что приводилась нами для определения поворота на плоскости XOY. Повороты вокруг произвольных осей строятся за счет композиции поворотов вокруг главных координатных осей. Схема такого подхода нами уже разбиралась. Применим ее на практике еще раз. Сначала уточним исходные данные. Для задания произвольного поворота в пространстве недостаточно определить только ось. При этом невозможно определить направление поворота. Необходимо задать направляющий вектор и точку его привязки. Так же необходимо задать величину угла поворота q. Для выполнения заданного преобразования необходимо: · Совместить точку привязки с началом координат за счет преобразования переноса Т, задаваемого вектором, соединяющим начало координат с этой точкой. В результате приходим к ситуации показанной на рисунке 2.15. · Выполнить поворот вокруг оси X на угол a, переводящий направляющий вектор в плоскость XOZ. · Выполнить поворот вокруг оси Y на угол b, совмещающий направляющий вектор с положительной полуосью Z. · Выполнить поворот вокруг оси Z на требуемый угол q. · Выполнить обратные преобразования, приводящие сцену в исходное состояние.
|