![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Выводы по плоским геометрическим преобразованиям
Подводя итог изучению двумерных преобразований, еще раз обратим внимание на структуру матрицы преобразования. М = Элементы a, b, c и d определяют коэффициенты поворота, масштабирования и сдвига. Элементы е и f служат для формирования переноса. Смысл трех оставшихся элементов необходимо прояснить. Начнем с k и m. Обычно мы устанавливали им нулевое значение. Теперь положим их отличными от нуля, элементы главной диагонали приравняем к единице, а остальные элементы обнулим. Применим получившееся преобразование к произвольной точке, заданной в однородных координатах с w =1. [x’ y’ w’] = [x y 1] x’ = x, y’=y Для того чтобы понять результат, обратимся к геометрической интерпретации однородных координат. Точка в однородных координатах определяется тройкой, следовательно, мы имеем дело с трехмерной координатной системой, определенной в пространстве. Две оси системы нам привычны - это X и Y, а третья – W, ось масштабных коэффициентов. Зафиксировав значение W, установив его равным единице, мы перешли от пространства к плоскости параллельной плоскости XOY. Установив элементы k и m отличными от нуля, мы сняли данное ограничение, и полученная в результате преобразования точка расположена в пространстве. При этом ее третья координата определяется по формуле kx+my+1, т.е. зависит от значений x и у. Следовательно, точки, подвергшиеся данному преобразованию, будут лежать в некоторой плоскости не параллельной плоскости XOY, как это показано на рис 2.12. Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение Вернем точку на плоскость W=1 путем проецирования лучами, проходящими через начало координат. Из подобия треугольников x’’= x’/w’= x/(kx+my+1) и аналогично y’’= y’/w’= y/(kx+my+1). Таким образом, математически подобное проецирование выразится в простой нормализации. [x’’ y’’ 1] = Для выяснения смысла элемента s матрицы преобразования, проведем рассуждения по аналогичной схеме. Умножим произвольную точку на соответствующую матрицу с ненулевым значением s. [x y 1] Все точки, подвергшиеся такому преобразованию, будут лежать в плоскости W=s которая параллельна плоскости W=1, как это показано на рисунке 2.13. Нормализация будет приводить к простому масштабированию с одинаковыми коэффициентами по осям. [x’ y’ 1] = Основное отличие такого масштабирования от рассмотренного ранее состоит в том, что при s< 1 будет происходить растяжение, а при s> 1 – сжатие.
|