Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Строение полимеров






Форма и структура макромолекул полимеров. Макромолекулы полимеров могут быть линейными, разветвленными и сетчатыми Линейные полимеры образуются при полимеризации мономеров или линейной поликонденсации. Разветвленные полимеры мо­гут образовываться как при полимеризации, так и при поликонденса­ции. Разветвление полимеров при полимеризации может быть вызва­но передачей цепи на макромолекулу, росте боковых цепей за счет сополимеризации и другими причинами. Разветвленные полимеры образуются при поликонденсации многофункциональных соедине­ний, а также в результате прививки к макромолекулам боковых це­пей. Прививки проводят либо путем взаимодействия полимеров с олигомерами или мономерами, или путем физического воздействия (например, γ -облучения) на смесь полимера и мономеров. Сетча­тые полимеры образуются в результате сшивки цепей при вулкани­зации, образовании термореактивных смол и т.д. Форма макромоле­кул влияет на структуру и свойства полимеров.

Линейные и разветвленные макромолекулы из-за способности атомов и групп вращаться вокруг ординарных связей постоянно из­меняют свою пространственную форму, или, другими словами, име­ют много конформационных структур. Это свойство обеспечивает гибкость макромолекул, которые могут изгибаться, скручиваться, распрямляться. Поэтому для линейных и разветвленных полимеров характерно высокоэластическое состояние, т.е. способность к обратимой деформации под действием относительно небольших внешних сил. Они также обладают термопластическими свойствами, т.е. способны размягчаться при нагревании и затвердевать при охлаждении без химических превращений. При разветвлении полимеров эластические и термопластические свойства становятся менее выраженными. При образовании сетчатой структуры термопластичность теряется. По мере уменьшения длины цепей в ячейках сеток утрачивается и частичность полимеров, например при переходе от каучука к эбониту.

Линейные макромолекулы могут иметь регулярную и нерегулярную структуру. В полимерах регулярной структуры от­ельные звенья цепи повторяются в пространстве в определенном порядке. Полимеры регулярной структуры получили название стереорегулярных. Полимеры, у которых отдельные звенья расположены в пространстве бессистемно, имеют нерегулярную структуру. В качестве примера приведем полипропилен нерегулярной (а) и регу­лярной (б) структуры:

Стереорегулярные полимеры обычно получают методом ионной поляризации с использованием комплексных катализаторов. Стереорегулярной структурой обладают натуральный каучук, а также неко­торые синтетические полимеры, например полиизобутилен, полиэти­лен, полипропилен. Стереорегулярность структуры изменяет тепло­вые и механические свойства полимеров.

Кристаллическое состояние полимеров. Большинство полимеров обычно находится в аморфном состоянии. Однако некоторые Полимеры в определенных условиях могут иметь кристаллическую структуру. Способностью кристаллизоваться обладают лишь стереорегулярные полимеры. Благодаря регулярной структуре и гибкости макромолекулы могут сближаться друг с другом на достаточно близкое расстояние, чтобы между ними возникли эффективные межмолекулярные взаимодействия и даже водородные связи, которые приво­дят к упорядочению структуры. Процесс кристаллизации полимера протекает через несколько стадий. На первой стадии возникают пачки - ассоциаты упорядоченно расположенных молекул. Из пачек образуются фибриллы и сферолиты. Фибриллы представляют собой агрегаты пачек продолговатой формы, а сферолиты игольчатые образования, радиально расходящиеся из одного центр. Наконец, из фибрилл и сферолитов образуются единичны кристаллы. Кристаллические полимеры состоят из большого числа кристаллов, между которыми находятся участки с неупорядочен ной структурой (аморфные области). Поэтому такие полимеры характеризуются определенной степенью кристалличности. На­пример, степень кристалличности полиэтилена может достигать 80%. Наиболее выражена способность к образованию кристаллов у полиолефинов, полиамидов и полиэфиров. Кристаллическое строение име­ет полимер карбин. Свойства кристаллических и аморфных полиме­ров существенно различаются. Так, аморфные полимеры характери­зуются областью температур размягчения, т.е. областью постепенно­го перехода из твердого состояния в жидкое, а кристаллические по­лимеры - температурой плавления. Некоторые полимеры образуют жидкие кристаллы.

Физические состояния аморфных полимеров. Аморф­ные полимеры могут находиться в стеклообразном, высокоэла­стическом и вязкотекучем со­стояниях. Для определения тем­пературных границ существова­ния этих состояний изучают зависимость деформации полимера от температуры, на основании которой строят термомеханическую кривую:

При низкой температуре полимер находится в стеклообразном состоянии (область 1), в котором полимер ведет себя как другое твердое тело. В этом состоянии отсутствует движение, как в молекулы, так и отдельных звеньев, а проявляются лишь колебания атомов около положения равновесия. При повышении температуры полимер переходит в высокоэластическое состояние, свойственное только высокомолекулярным соединениям (область 2) вещество в высокоэластическом состоянии способно к значительным обратимым деформациям, что обусловлено подвижностью звеньев и соответственно гибкостью макромолекул.

Перемещение звеньев происходит не мгновенно, поэтому деформации полимеров в высокоэластическом состоянии имеют релаксационную природу, т.е. характеризуются временем установления равновесия. Высокоэластическое состояние полимеров проявляется в интервале от температуры стеклования (Тст) до температуры текучести (Тт) (область 2). Если температурный интевал Тстт достаточно широк и захватывает обычные температуры, то такие полимеры называют эластиками, или эластомерами или каучуками. Полимеры с узким интервалом температур Тстт, смещенным в область повышенных температур, называют пластиками или пластомерами. При обычных температурах пластики находятся в стеклообразном состоянии. При температуре выше температуры текучести Тт (область 3) полимер переходит в вязкотекучее состояние. Повышение температуры выше Тр ведет к деструкции, разрушению полимера. Вещество в вязкотекучем состоянии под действием напряжений сдвига течет как вязкая жидкость, причем деформация полимера является необратимой (пластической). Вязкотекучее состояние характеризуется подвижностью как отдельных звеньев, так и всей макромолекулы. При течении полимера происходит распрямление макромолекул и их сближение, приводящее к усилению межмолекулярного взаимодействия, в результате которого полимер становится жестким и течение его прекращается. Это явление, характерное только для аморфных полимеров, получило название механического стеклования. Его используют при формировании волокон и пленок. В вязкотекучем состояние полимер может быть также переведен путем добавления растворителей или пластификаторов, например эфиров фосфорной и фталевой кислот.

Итак, полимеры могут иметь линейную, разветвленную и сетчатую структуры и находиться в аморфном, а некоторые полимеры в кристаллическом состоянии.

Вопросы для самоконтроля

4. Как различаются по строению и свойствам полимеры нерегулярной и регулярной структуры?

5. Какие различия в свойствах у аморфных и кристаллических полимеров?

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.