Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Метод Лагранжа и метод Гаусса
§ В этом и последующих пунктах существенно потребуется знание МЕТОДА ГАУССА преобразования систем линейных уравнений. П Пример. Рассмотрим матрицу квадратичной формы из предыдущих пунктов, и, временно выходя из круга поставленных в настоящем разделе задач, побробуем применить к ней метод Гаусса приведения к треугольному виду: Обратим внимание на два обстоятельства: диагональные элементы последней матрицы совпадают с коэффициентами канонического вида квадратичной формы, а коэффициенты замены переменных, приводящей к этому каноническому виду, совпадают с элементами строк этой матрицы, если их разделить на соответствующие диагональные элементы. Возникает подозрение , что метод Лагранжа является «замаскированной» версией метода Гаусса. ♦ Для того, чтобы выяснить аналитический смысл преобразований по методу Лагранжа найдем правило формирования коэффициентов в первом шаге приведения квадратичной формы к каноническому виду. Пусть исходная квадратичная форма записана в виде т.е. коэффициенты при смешанных произведениях переменных записаны с выделением множителя . После выделения полного квадрата, содержащего переменные : в правой части тождества образовалась квадратичная форма , не содержащая . Она равна Если теперь выписать матрицу этой квадратичной формы (она имеет порядок ), то ее элементы образуются по точно такому же правилу, как и коэффициенты матрицы, получающейся из матрицы в результате первого шага метода Гаусса. Т Теорема. Метод Лагранжа приведения квадратичной формы к каноническому виду эквивалентен методу Гаусса приведения матрицы к треугольному виду. Доказательство. Действительно, первый шаг прямого хода метода исключения переменных Гаусса преобразует матрицу следующим образом: здесь и предполагается, что . Видим, что формула формирования элементов матрицы точно такая же, как и матрицы квадратичной формы . Более того, поскольку матрица симметрична (), то и только что полученная матрица оказывается симметричной. Если , то к этой новой матрице можно снова применить ту же процедуру, и т.д., и в конце концов придем к матрице первого порядка. Собирая все промежуточные результаты в одну матрицу, получим ее в треугольном виде при условии, что ни одно из чисел на диагонали не обратилось в нуль: Если теперь обратиться к методу Лагранжа, то увидим, что полученная матрица как раз и определяет замену переменных приводящую квадратичную форму к каноническому виду:
|