Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Билинейная форма. Связь с квадратичной формой. Приведение симметричной билинейной формы к каноническому виду






     

    Говорят, что в линейном пространстве над числовым полем определена билинейная форма , если любым из ставится в соответствие определенное действительное число , причем функция является линейной по каждому аргументу.

    Если в линейном пространстве фиксирован базис и , (), то билинейная форма имеет вид , где . Матрица называется матрицей билинейной формы в базисе .

    Если в линейном пространстве фиксированы два базиса , и , то закон преобразования матрицы билинейной формы записывается в виде (84)

    Билинейная форма называется симметричной, если для любых из .

    Теорема 6 В линейном пространстве билинейная форма симметрична тогда и только тогда, когда ее матрица симметрична.

     

    Пусть задана билинейная форма в линейном пространстве . Рассмотрим функцию одного векторного аргумента: , . Если положить , то , . Из последней записи видно, что является квадратичной формой от переменных , которые интерпретируются как координаты элемента в базисе , т.е. . Каждой билинейной форме соответствует одна квадратичная форма. Каждую же квадратичную форму можно получить из бесконечного числа билинейных форм, среди которых имеется единственная симметричная билинейная форма.

     

    Теорема 7 Для любой симметричной билинейной формы существует канонический базис , в котором эта форма имеет канонический вид , где , , .

     

    Пусть симметричная билинейная форма в базисе имеет матрицу . Тогда соответствующая ей квадратичная форма имеет ту же матрицу . Для квадратичной формы существует линейное невырожденное преобразование , которое приводит эту квадратичную форму к каноническому виду . Канонический базис и канонический вид билинейной формы определяются соотношениями и .






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.