Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Классификация квадратичных форм. Необходимое и достаточное условие положительной (отрицательной) определенности квадратичных форм






     

    Квадратичная форма называется положительно (отрицательно) определенной, если для всех значений выполняется условие (), причем только при .

     

    Теорема 4 Квадратичная форма является положительно (отрицательно) определенной тогда и только тогда, когда все ее канонические коэффициенты положительны (отрицательны).

     

    Угловым минором порядка () матрицы называется минор .

     

    Теорема 5 (критерий Сильвестра положительной определенности квадратичной формы) Для того чтобы квадратичная форма была положительно определенной, необходимо и достаточно, чтобы все угловые миноры ее матрицы были положительны.

     

    Матрица называется положительно определенной, если она является матрицей некоторой положительно определенной квадратичной формы (обозначение: ).

    Говорят, что , если .

    Теорема 6 (метод Якоби) Если (), то существует единственное невырожденное линейное преобразование с треугольной матрицей, приводящее квадратичную форму к каноническому виду с каноническими коэффициентами , , .

     

    Квадратичная форма называется неотрицательной (неположительной), если для всех значений выполняется условие ().






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.