Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Практическое занятие № 4






    Взаимное расположение прямой и плоскости

     

    Задача 1

    Найти точку пересечения прямой и плоскости и .

     

     

    Решение. Рисунок 58

    Для того чтобы найти точку пересечения прямой и плоскости необходимо решить систему уравнений. Сначала от канонического уравнения прямой перейдем к параметрическому уравнению

    - параметрическое уравнение прямой. Точка лежит на прямой и на плоскости, следовательно, ее координаты удовлетворяют и уравнению прямой и уравнению плоскости. Запишем систему линейных уравнений и решим ее и найдем параметр t.

     

    , ,

     

    Подставив вместо параметра значения в параметрическое уравнения мы получили координаты точки.

    Точка пересечения прямой и плоскости имеет координаты .

     

    Ответ.

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.