Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Сложение и вычитание целых чисел






 

В большинстве компьютеров операция вычитания не используется. Вместо нее производится сложение обратных или дополнительных кодов уменьшаемого и вычитаемого. Это позволяет существенно упростить конструкцию арифметико-логического устройства процессора.

Сложение обратных кодов. Здесь при сложении чисел А и В имеют место четыре основных и два особых случая:

1. А и В положительные. При суммировании складываются все разряды, включая разряд знака. Так как знаковые разряды положительных слагаемых равны нулю, разряд знака суммы тоже равен нулю. Например:

 

 

Получен правильный результат.

2. А положительное, B отрицательное и по абсолютной величине больше, чем А. Например:

 

 

Получен правильный результат в обратном коде. При переводе в прямой код биты цифровой части результата инвертируются: 1 0000111 = –710.

3. А положительное, B отрицательное и по абсолютной величине меньше, чем А. Например:

 

 

Компьютер исправляет полученный первоначально неправильный результат (6 вместо 7) переносом единицы из знакового разряда в младший разряд суммы.

 

4. А и В отрицательные. Например:

 

Полученный первоначально неправильный результат (обратный код чис­ла –1110 вместо обратного кода числа –1010) компьютер исправляет перено­сом единицы из знакового разряда в младший разряд суммы. При переводе результата в прямой код биты цифровой части числа инвертируются: 1 0001010 = –1010.

Переполнение

При сложении может возникнуть ситуация, когда старшие разряды ре­зуль­тата операции не помещаются в отведенной для него области памяти. Та­кая ситуация называется переполнением разрядной сетки формата числа. Для обнаружения переполнения и оповещения о возникшей ошибке в ком­пью­тере используются специальные средства. Ниже приведены два возмож­ных случая переполнения.

5. А и В положительные, сумма А+В больше, либо равна 2n–1, где n — количество разрядов формата чисел (для однобайтового формата n=8, 2n–1 = 27 = 128). Например:

 

Обратите внимание: в результате сложения положительных чисел полу­чен отрицательный результат!

Семи разрядов цифровой части числового формата недостаточно для раз­мещения восьмиразрядной суммы (16210 = 101000102), поэтому старший разряд суммы оказывается в знаковом разряде. Это вызывает несов­па­де­ние знака суммы и знаков слагаемых, что является свидетельством пере­полнения разрядной сетки.

6. А и В отрицательные, сумма абсолютных величин А и В больше, либо равна 2n–1. Например:

 

В результате сложения отрицательных чисел полу­чен результат > 0!

Здесь знак суммы тоже не совпадает со знаками слагаемых, что сви­де­тельствует о переполнении разрядной сетки.

 

Сложение дополнительных кодов. Здесь также имеют место рассмот­рен­ные выше шесть случаев:

1. А и В положительные. Здесь нет отличий от случая 1, рассмотрен­но­го для обратного кода (коды неотрицательных чисел совпадают).

2. А положительное, B отрицательное и по абсолютной величине больше, чем А. Например:

 


Получен правильный результат в дополнительном коде. При переводе в пря­мой код биты цифровой части результата инвертируются и к младшему раз­ря­ду прибавляется единица: 1 0000110 + 1 = 1 0000111 = –710.

3. А положительное, B отрицательное и по абсолютной величине меньше, чем А. Например:

 

 

Получен правильный результат. Единицу переноса из знакового разряда компьютер отбрасывает.

4. А и В отрицательные. Например:

 

Получен правильный результат в дополнительном коде. Единицу пере­носа из знакового разряда компьютер отбрасывает.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.