![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Вынужденные колебания в системе с n степенями свободы
Для линейных систем справедлив принцип суперпозиции колебаний. Поэтому задача о вынужденных колебаниях в системе под действием любой периодической силы сводится к нахождению вынужденных движений системы в результате действия гармонической силы частоты w. Если рассматриваемая система консервативна, то уравнение её колебаний в матричной форме принимает вид:
Вынужденные колебания системы должны быть гармоникой той же частоты
где
Таким образом, для отыскания выражения для вынужденного колебания в матричной форме необходимо обратить матрицу Обращение матриц больших размеров - сложная задача, поэтому чаще используют другой метод - разлагают искомое решение по собственным колебаниям системы. Для этого амплитудный вектор
Теперь задача сводится к отысканию неизвестных коэффициентов Bs. Внешнюю силу разложим следующим образом:
где fs - коэффициенты разложения. Коэффициенты fs можно найти, используя условие ортогональности (8.12). Умножая (8.23) слева скалярно на
Подставим теперь выражения (8.22) и (8.23) в уравнение (8.21), тогда
Умножим уравнение (8.25) слева на
Отсюда, с помощью формулы (8.22), находим амплитуды вынужденных колебаний:
Из формулы (8.26) видно, что при w ® ws, амплитуда вынужденных колебаний всех координат стремится к бесконечности, т. е. происходит резонансное возрастание амплитуды. Резонанса на частоте ws не будет, если вектор внешней силы ортогонален s -му нормальному колебанию, когда в соответствии с соотношением (8.24) получается fs = 0. Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение При наличии затухания расчёт колебаний для систем с n степенями свободы становится ещё более громоздким. Для диссипативных систем с затуханием типа вязкого трения можно ввести матрицу рассеяния энергии
Собственные колебания, соответствующие
Подставляя (8.28) в (8.27), получим уравнение степени 2 n для определения l
Так как уравнение (8.29) имеет действительные коэффициенты, то все его комплексные корни будут попарно сопряжёнными, т. е.
где ds и ws - вещественные числа. Для диссипативной системы, не содержащей внутренних источников энергии, все ds < 0. Общий вид свободных колебаний:
Для вынужденных колебаний по-прежнему разлагаем силу
Таким образом, при совпадении частоты внешней силы с одной из собственных частот системы наблюдается резонанс. Однако амплитуда вынужденных колебаний при резонансе остается ограниченной, как и при резонансе в диссипативной системе с одной степенью свободы.
|