Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Ортогональность нормальных колебаний и экстремальные свойства собственных частот
Каждому нормальному колебанию с частотой ws соответствует определенное распределение амплитуд по координатам, или определённая форма колебаний. Формы колебаний, соответствующие разным собственным частотам, ортогональны друг другу. Для того, чтобы показать это, запишем уравнение (8.3) для s -й и r -й форм колебаний: , . Умножим скалярно справа первое из этих уравнений на , а второе на . Учитывая, что матрицы и симметричны, т. е. , , вычтем из второго уравнения первое: . Если ws ¹ wr, то отсюда
С учётом формул (8.3) и (8.11) получаем также
Соотношения (8.11) и (8.12) называются условием ортогональности s -й и r -й форм нормальных колебаний. Использование условий ортогональности нормальных колебаний даёт возможность получить некоторые соотношения, общие для любых систем с n степенями свободы. Покажем, например, что потенциальная энергия любого собственного колебания равна сумме потенциальных энергий всех собственных колебаний. Потенциальную энергию системы (8.1) в матричной форме можно записать в виде . Подставляя теперь выражение вида (8.10) и учитывая условие ортогональности (8.12), получим
Аналогично с учётом условия ортогональности (8.11) легко показать, что
Выражения (8.13) и (8.14) показывают, что в нормальных координатах и потенциальная, и кинетическая энергия являются диагональными квадратичными формами. Следовательно, систему с п степенями свободы можно представить как набор из п независимых систем с одной степенью свободы. Зададим в момент времени t = 0 произвольное отклонение от положения равновесия системы . Пусть скорости изменения координат в тот же момент времени равны нулю, т. е. . Тогда из уравнения (8.9) следует, что колебание в системе в любой момент времени t > 0 можно записать в виде
Потенциальная и кинетическая энергия системы при этом с учетом формул (8.11) и (8.12) равны , . При колебаниях в консервативной системе среднее по времени значение потенциальной энергии равно среднему значению кинетической энергии, т. е.
Расположим собственные частоты в порядке их возрастания: . Если заменить все квадратом наинизшей частоты , то (8.16) превращается в неравенство
Левая часть неравенства (8.17) является функцией амплитуд Cs, т. е. функцией начального распределения амплитуд по степеням свободы. Величина является минимумом левой части (8.17) как функции . Таким образом, используя соотношение (8.15), получим
Этот минимум достигается в том случае, когда все Cs, за исключением C 1, равны нулю. Тогда , т. е. распределение амплитуд по координатам совпадает с первой собственной формой колебания. Для нахождения второй собственной частоты w 2 следует выбрать начальное отклонение ортогональным первой собственной форме колебания, т. е. и . Тогда в выражении (8.16) суммирование начинается с s = 2 и самой низкой частотой окажется частота w 2. Приводя рассуждения, аналогичные изложенным выше, получим . Минимум этого выражения достигается при , т. е. когда начальное распределение колебаний совпадает со второй собственной формой. Аналогичным образом можно найти все собственные частоты колебаний w s и собственные формы (по индукции легко показывается, что все квадраты собственных частот являются экстремумами некоторых выражений).
|