Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Сумма событий. Теорема сложения вероятностей для несовместимых событий
На практике обычно требуется определить вероятности событий, непосредственное воспроизведение которых невозможно. В этом случае применяют методы, позволяющие по известным вероятностям одних событий определять вероятности других, более сложных событий, с ними связанных. При решении таких задач используют основные теоремы теории вероятностей. Суммойдвух или нескольких событий называют сложное событие, состоящее в появлении хотя бы одного из этих событий. Для несовместных событий Аi условно пишут: , а также . Теорема. Вероятность суммы двух или нескольких несовместных событий равна сумме вероятностей этих событий, т.е.
Следствие 1. Если события образуют полную группу событий, то сумма их вероятностей равна единице:
Следствие 2. Сумма вероятностей противоположных событий равна единице:
Задача 1.3. В лотерее 1000 билетов, из них падает выигрышей: на один билет — 500 руб., на 10 билетов — по 100 руб., на 50 билетов — по 20 руб., на 100 билетов — по 5 руб. Остальные билеты — невыигрышные. При взятии случайным образом одного билета найти вероятности следующих событий: 1) выиграть не менее 20 руб. и 2) выиграть любую сумму. Решение. Обозначим события: В 1 — выигрыш не менее 20 руб.; В 2 — выигрыш любой суммы; А 1 — выигрыш 20 руб.; А 2 — выигрыш 100 руб.; А 3 — выигрыш 500 руб.; А 4 — выигрыш 5 руб. Согласно условию — ; . События Аi несовместны, поэтому применима теорема: ; .
|