Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Высокий бесконечный барьер
Потенциальная энергия имеет тот же вид, но энергия частицы меньшевысоты барьера: Е U (рис. 30.2). Решение в области 1 остается преж-ним: суперпозиция прямой и отраженной волн. В области же 2 из-заобратного соотношения между энергией частицы и высотой барьера вол-новой вектор становится мнимым:
от барьера. Соответственно, величина D = 1 --- R = 4 /( + )2, При подстановке мнимого волнового вектора = iк в выражение для коэффициента отражения R получаем, что B = 1. Как и в классике, частица с энергией, меньшей высоты бесконечного барьера, наверняка Глава 30. Уравнение Шредингера Рис.30.2: Высокий потенциальный барьер Рис.30.3: Конечный потенциальный барьер отразится от него. Правда, в классической физике частица вовсе не мо-жет проникнуть под барьер. Наше же решение уравнения Шредингерадля области 2 в случае высокого барьера становится равным
Это уже не совсем волна, а экспоненциально затухающая функция. Каки в случае низкого барьера, отброшено нефизическое решение --- экспо-ненциально растущая функция вида еzх. Под глубиной проникновениячастицы под барьер d принято понимать расстояние, на котором интен-сивность потока (вероятность) ослабевает в е раз. Из выражения для следует, что d = 1/(2к).
|