Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Частица в бесконечно глубокой потенциальной яме
Потенциал в этой задаче имеет вид: Такая система соответствует частице, движущейся вдоль прямой линиии отскакивающей от абсолютно отражающих препятствий в точках х = 0и х = l. В область бесконечного потенциала частица проникнуть не мо-жет, следовательно ? ? (х) = Аsin(kх) + Вcos(кх ). Используем сначалапервое граничное условие:
Asin(kx)+Bcos(kx)
или бегущих Аеiкх + Вei-кх если 0 х I, если х I или х 0.
? ? (х) = Аsin(кх). Если продолжить нашу аналогию, то можно сказать, что на струне, закрепленной в одной точке, бегущих волн не бывает: отражение от неподвижной точки обязательно порождает стоячую волну.Однако на длину волны никаких ограничений не накладывается: такаяструна также не звучит. Теперь наложим второе из граничных условий:
? ? (х) = 0, чтоозначает отсутствие частицы в яме (вероятность найти ее всюду равнанулю). Поэтому нас интересует второе решение, когда sin (kl) = 0. Этовозможно лишь при некоторых значениях волнового вектора: kп = n/1(п = 1, 2, 3,...). Так как энергия частицы связана с волновым вектором, то
Мы получили квантование энергии, то есть наша ``струна'', закрепленнаяс обеих сторон, зазвучала, так как появились выделенные частоты. Подставляя найденные разрешенные значения волнового вектора в вы-ражение для волновой функции, получаем ее в виде:
Смысл квантового числа п: оно на единицу больше числа нулей вол-новой функции. Значение постоянной А = у/2/7 определено из условиянормировки (см. задачи в последнем разделе этой главы). Откуда же берется дискретность уровней энергии, характерная и дляатома? Сравним со свободной частицей: уравнения те же, но с инымиграничными условиями! Здесь возможны две постановки задачи. В пер-вом случае исследуется состояние, которому в классике соответствовалобы инфинитное движение (задача рассеяния). Обычно в таких случаяхрешения возможны при любых значениях энергии Е (как говорят, спектр непрерывен ). Во втором случае исследуется состояние, которому в клас-сике соответствует финитное движение в ограниченной области про-странства (задача на связанные состояния). Требование конечности вол-новой функции во всем пространстве ведет к квантованию энергии. Глава 30. Уравнение Шредингера Подчеркнем: в этом случае стационарное уравнение имеет физическиприемлемые решения не всегда, а лишь при некоторых значениях Е. Какследствие возникает дискретный спектр энергии системы. Задача 30.21. Определить разность соседних уровней энергии Е длячастицы в бесконечной потенциальной яме при больших значениях п. По-лученный результат использовать для оценки разности соседних уровнеймолекул азота при комнатной температуре Т = 300 К в сосуде. Принятьмассу молекулы т = 2.3 10-26 кг, а линейный размер сосуда l = 0.1 м.Сравнить результат с кинетической энергией поступательного движениямолекул азота. Решение. Используя выражение для уровней энергии частицыв потенциальной яме, находим разность энергий соседних уровней
при больших значениях п. Кинетическая энергия поступательного дви-жения молекул азота равна Е = 3 Т /2? 6, 21 10-21 Дж. Приравнивая Е и выражение для энергии уровней частицы в яме, находим, что такаяэнергия соответствует квантовым числам порядка
Уже само по себе это число говорит, что мы находимся в области крайневысоких возбуждений, то есть в области справедливости классическихзаконов. Разность соседних уровней получаем, подставляя в формулудля Е найденное выражение для квантового числа п:
В электронвольтах те же характеристики имеют значения Е 0.039 эВ, Е 1.5 10-11 эВ. Относительная разность уровней ничтожно мала: Е/Е 4 10---10, и потому в классической физике квантовой дискретно-стью пренебрегают. ¦
|