Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Знак равенства будет в том случае, когда значения сигнала распределены по нормальному закону.
Согласно определению пропускной способности
(4.34) Энтропия - это энтропия множества отсчетов в моменты времени с интервалом из ансамбля для всех моментов времени . Ввиду того, что неизвестны вероятностные характеристик процесса , справедливы выражения
. (4.35) (4.36)
.
Используем свойство: среднегеометрическое не превышает среднеарифметическое. Тогда (4.37) При вычислении условной энтропии используется независимость символов попарно на входе и выходе канала связи.
= (4.38) Условная энтропия зависит от шума и распределена по нормальному закону согласно условиям теоремы. Энтропия случайной величины, распределённой по нормальному закону, равна . (4.39) После подстановки (**.5) в (**.14) получим (4.40) Подставим выражения (**.13) и (**.16) в (**.10):
В результате получим (4.41) Если сигнал на входе канала связи распределён по нормальному закону, пропускная способность канала равна (4.42)
Как видно из формулы, пропускная способность канала зависит от полосы частот, занимаемой сигналом, мощности сигнала и спектральной плотности мощности «белого» шума.
|