Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Канал с шумами
Наличие шума в канале связи приводит к тому, что условная энтропия не равна нулю. Условную энтропию Шеннон назвал ненадёжностью канала, так как она зависит от шума в канале связи. В результате возникает вопрос, существует ли метод кодирования, позволяющий передавать информацию с определённой скоростью . На это вопрос отвечает теорема Шеннона (Шеннон стр.280). Пусть дискретный канал обладает пропускной способностью , а дискретный источник – энтропией . Если < , то существует такая система кодирования, что сообщения источника могут быть переданы по каналу с произвольно малой частотой ошибок, (или со сколь угодно малой энтропией ). Если > , то можно закодировать источник таким образом, что ненадёжность канала будет меньше, чем , где сколь угодно мало. Не существует способа кодирования, обеспечивающего ненадёжность, меньшую, чем . Пример 4.1. Определим пропускную способность двоичного симметричного канала связи. Модель двоичного симметричного канала показан на рисунке 4.4. В канал связи поступают символы 1 и 0, отображающие реальные физические сигналы. 1) Канал симметричный. Вероятности искажения символов равны , вероятности неискажённого приема символов равны . 2) Канал стационарный, так как условные вероятности не зависят от времени. Пропускную способность вычислим по формуле (4.8). Энтропию определим из условия при отсутствии шума. Энтропия принимает максимальное значение, равное 1, при . Условная энтропия равна Подставляя полученные величины в (4.8), получим . Как видно из формулы, пропускная способность зависит скорости поступления символов в канал и от вероятности искажения символов. Положим, задан ансамбль сообщений X с распределением вероятностей P, (Таблица 4.2). Сообщения генерируются со скоростью .Способ кодирования определён и каждому сообщению приписан двоичный код. Энтропия ансамбля сообщений X равна ,
вероятности реализации символов «1» и «0» равны , энтропия ансамбля символов Y равна , средняя длина кода равна . Положим, в канале действует такой шум, что вероятность ошибочного перехода равна . Сможет ли канал обеспечить передачу сообщений? 1) 2)Будем считать . Тогда = 204.826 . 3)Будем считать . Тогда и пропускная способность канала равна = = = 108.764 Как видно, пропускная способность канала значительно ниже скорости генерации информации источником и часть информации может быть утеряна. В этом случае можно уменьшить скорость генерации сообщений или уменьшить вероятность ошибок . Положим, каким-то образом удалось уменьшить вероятности ошибок до величины 0.01. Тогда пропускная способность канала увеличится до величины . При таком соотношении скорости поступления информации в канал и пропускной способности канала искажения информации в канале из-за величин и не будет.
|