Главная страница
Случайная страница
Разделы сайта
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей:
— Сам записывает клиентов и напоминает им о визите;
— Персонализирует скидки, чаевые, кэшбэк и предоплаты;
— Увеличивает доходимость и помогает больше зарабатывать;
Начать пользоваться сервисом
Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
Начать продвижение сайта
Канал без шумов
Шум в канале связи искажает физические параметры сигнала, что в свою очередь приводит к искажению символов. Вероятностная характеристика искажений – это условная вероятность . Будем считать, сигнал в канале не искажается, если . Тогда для канала без шумов справедливо выражение
(4.9)
Из выражения (4.9) следует, , т.е. пропускная способность канала связи равна
= (4.10)
Если используется код с основанием D, то энтропия ансамбля достигает наибольшего значения при . Тогда пропускная способность канала равна
. (4.11)
Теорема Шеннона о кодирование источника независимых сообщений для канала без шумов, [6, стр. 270].
Пусть источник имеет энтропию , а канал имеет пропускную способность . Тогда можно закодировать сообщения таким образом, что можно передавать их со средней скоростью
, где .
Передавать сообщения со скоростью большей, чем , невозможно.
Доказательство. Будем считать источник сообщений согласованным с каналом по скорости передачи информации, если . Тогда
. (4.12)
Энтропия не превышает . Запишем
= ,. (4.13)
где .
Подстановка (4.13) в (4.12) позволяет получить
, (4.14)
где .
Если принять , то , т.е. не имеет смысла передавать сообщения.
|