Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Автокорреляционная функция.






    Автокорреляция — статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом, например, для случайного процесса — со сдвигом по времени.

    В обработке сигналов автокорреляционная функция определяется интегралом:

    и показывает связь сигнала (функции ) с копией самого себя, смещённого на величину .

    В теории случайных функций АКФ является корреляционным моментом двух значений одной случайной функции

    :

    Здесь , а — математическое ожидание.

    Автокорреляционная функция полезна в некоторых случаях, поскольку она дает наглядную картину того, как зависимость в ряде затухает с увеличением задержки или разделяющего промежутка и между точками ряда. Однако иногда автокорреляционная функция с трудом поддается интерпретации, так как соседние значения могут быть сильно коррелированы. Это означает, что выборочная автокорреляционная функция может иметь видимые искажения

    39. Модели авторегрессии.

    Модель авторегрессии — скользящего среднего (англ. autoregressive moving-average model, ARMA) — одна из математических моделей, использующихся для анализа и прогнозирования стационарных временных рядов в статистике. Модель ARMA обобщает две более простые модели временных рядов — модель авторегрессии (AR) и модель скользящего среднего (MA).

    Известно несколько видов авторегрессионных моделей:

    - собственно модели авторегрессии (AR - auto regressive);

    - модели скользящего среднего (MA - moving average);

    - авторегрессии - скользящего среднего (ARMA – autoregressive moving average);

    - модели авторегрессии - проинтегрированного скользящего среднего (ARIMA - autoregressive integrated moving average);

    - модели авторегрессии с условной гетероскедастичностью (ARCH - autoregressive conditional heteroscedasticity);

    - расширения указанных выше авторегрессионных моделей: обобщенная авторегрессионная условно гетероскедастическая модель (GARCH – generalized autoregressive conditional heteroscedasticity model), интегрированная обобщенная авторегрессионная условно гетероскедастическая модель (IGARCH - integrated generalized autoregressive conditional heteroscedasticity model) и др.

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.