Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Оценивание параметров линейной регрессии в условиях гетероскедастичности.






Статистические проверки параметров регрессии, показателей корреляции основаны на непроверяемых предпосылках распределения случайной составляющей iε. Они носят лишь предварительный характер.

После построения уравнения регрессии проводится проверка наличия у оценок iε (случайных остатков) тех свойств, которые предполагались. Связано это с тем, что оценки параметров регрессии должны отвечать определенным критериям. Они должны быть несмещенными,

состоятельными и эффективными. Эти свойства оценок, полученных по МНК, имеют чрезвычайно важное практическое значение в использовании результатов регрессии и корреляции.

Несмещенность оценки означает, что математическое ожидание остатков равно нулю. Если оценки обладают свойством несмещенности, то их можно сравнивать по разным исследованиям.

Оценки считаются эффективными, если они характеризуются наименьшей дисперсией. В практических исследованиях это означает возможность перехода от точечного оценивания к интервальному.

Состоятельность оценок характеризует увеличение их точности с увеличением объема выборки. Большой практический интерес представляют те результаты регрессии, для которых доверительный интервал ожидаемого значения параметра регрессии ib имеет предел значений вероятности, равный единице. Иными словами, вероятность получения оценки на заданном расстоянии от истинного значения параметра близка к единице.

Указанные критерии оценок (несмещенность, состоятельность и эффективность) обязательно учитываются при разных способах оценивания. Метод наименьших квадратов строит оценки регрессии на основе минимизации суммы квадратов остатков. Поэтому очень важно исследовать

поведение остаточных величин регрессии iε. Условия, необходимые для получения несмещенных, состоятельных и эффективных оценок, представляют собой предпосылки МНК, соблюдение которых желательно для получения достоверных результатов регрессии.

Исследования остатков iε предполагают проверку наличия следующих пяти предпосылок МНК:

1) случайный характер остатков;

2) нулевая средняя величина остатков, не зависящая от ix;

3) гомоскедастичность – дисперсия каждого отклонения iε, одинакова для всех значений x;

4) отсутствие автокорреляции остатков – значения остатков iε распределены независимо друг от друга;

5) остатки подчиняются нормальному распределению.

 

30. Обобщенный метод наименьших квадратов.
При нарушении гомоскедастичности и наличии автокорреляции ошибок рекомендуется заменять традиционный метод наименьших квадратов (OLS) обобщенным методом (GLS).
Обобщенный метод наименьших квадратов применяется к преобразованным данным и позволяет получить оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии.

Предположим, что среднее значение остатков равно нулю, а дисперсия их пропорциональна величине , т.е. , где - дисперсия ошибки при конкретном i-м значении фактора; - постоянная дисперсия ошибки при соблюдении предпосылки о гомоскедастичности остатков; - коэффициент пропорциональности.

При этом предполагается, что неизвестна, а в отношении величины K выдвигается гипотезы, характеризующие структуру гетероскедастичности.
В общем виде для уравнения y = a + b × x + e модель примет вид:
В данной модели остаточные величины гетероскедастичны. Предположив в них отсутствие автокорреляции, перейдем к уравнению с гомоскедастичными остатками, поделив все переменные, зафиксированные в ходе i-го наблюдения, на . Тогда дисперсия остатков будет величиной постоянной, т.е. = . Иными словами, от регрессии y по x мы перейдем к регрессии на новых переменных: .
Дальнейшее преобразование уравнения регрессии и затем системы нормальных уравнений, то получим коэффициент регрессии: .

При обычном применении метода наименьших квадратов к уравнению линейной регрессии для переменных в отклонениях от средних уровней коэффициент регрессии b определяется по формуле


Как видим, при использовании обобщенного МНК с целью корректировки гетероскедастичности коэффициент регрессии b представляет собой взвешенную величину по отношению к обычному методу наименьших квадратов 1/K.

 

31. Автокорреляция и её причины автокорреляции.

Автокорреляция — это взаимосвязь последовательных элементов временного или пространственного ряда данных. В эконометрических исследованиях часто возникают и такие ситуации, когда дисперсия остатков постоянная, но наблюдается их ковариация. Это явление называют автокорреляцией остатков.

Причины автокорреляции.

Ошибки спецификации. Не учет в модели какой-либо важной объясняющей переменной либо неправильный выбор формы зависимости обычно приводит к системным отклонениям точек наблюдений от линии регрессии, что может обусловить автокорреляцию.

Инерция. Многие экономические показатели (например, инфляция, безработица, ВНП и т.п.) обладают определенной цикличностью.

Эффект паутины. Во многих производственных и других сферах экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом). Сглаживание данных. Зачастую данные по некоторому продолжительному временному периоду получают усреднением данных по составляющим его подынтервалам.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.