Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Гипотеза гомоскедастичости.
между значениями случайных ошибок модели регрессии в любых двух наблюдениях отсутствует систематическая взаимосвязь, т. е. случайные ошибки модели регрессии не коррелированны между собой (ковариация случайных ошибок любых двух разных наблюдений равна нулю): Второе условие означает гомоскедастичность (homoscedasticity – однородный разброс) дисперсий случайных ошибок модели регрессии. Под гомоскедастичностью понимается предположение о том, что дисперсия случайной ошибки е i является известной постоянной величиной для всех наблюдений. Но на практике предположение о гомоскедастичности случайной ошибки? i или остатков модели регрессии ei выполняется не всегда. Гетероскедастичность. 1. истинная гетероскедастичтность возникает в пространственных выборках при зависимости масштаба изменений зависимой переменной от некоторых переменных, называемой фактором пропорциональности(Z). Последствия гетероскедастичности для оценок параметров регрессии методом наименьших квадратов и проверки статистических гипотез. Для обнаружения гетероскедастичности остатков модели регрессии необходимо провести их анализ. При этом проверяются следующие гипотезы. Основная гипотеза H0 предполагает постоянство дисперсий случайных ошибок модели регрессии, т. е. присутствие в модели условия гомоскедастичности: Альтернативная гипотеза H1 предполагает непостоянство дисперсиий случайных ошибок в различных наблюдениях, т. е. присутствие в модели условия гетероскедастичности: Гетероскедастичность остатков модели регрессии может привести к негативным последствиям: 1) оценки неизвестных коэффициентов нормальной линейной модели регрессии являются несмещёнными и состоятельными, но при этом теряется свойство эффективности; 2) существует большая вероятность того, что оценки стандартных ошибок коэффициентов модели регрессии будут рассчитаны неверно, что конечном итоге может привести к утверждению неверной гипотезы о значимости коэффициентов регрессии и значимости модели регрессии в целом.
28. Признаки гетероскедастичности и ее диагностирование. Обнаружение гетероскедастичности. Предварительная работа 1. Нет ли очевидных ошибок спецификации? 2. Можно ли содержательно предполагать какой-то вид гетероскедастичности? 3. Рассмотрите график остатков. Способы обнаружения гетероскедастичности Обнаружение гетероскедастичности. Тесты 1. Тест ранговой корреляции Спирмена. 2. Тест Парка (The Park test). 3. Тест Голдфелда-Квандта(Goldfeld-Quandt test) 4. Тест Уайта (White test) Тесты на гетероскедастичность Средства при гетероскедастичности 1) Использовать взвешенный метод наименьших квадратов - LS(w). 2) Переопределить переменные. 3) Вычисление стандартных ошибок с поправкой на гетероскедастичность (метод Уайта) - LS(h) Что делать при обнаружении гетероскедастичности
|