Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Полиномиальная регрессия






Эти функции полезны, когда есть набор измеренных сответствующих значений y и x, между которыми ожидается полиномиальная зависимость, и нужно приблизить эти значения с помощью полинома наилучшим в определённом смысле образом.

Используйте regress, когда нужно использовать единственный полином, чтобы приблизить все данные. Функция regress допускает использование полинома любого порядка. Однако на практике не следует использовать степень полинома выше n = 4.

Так как regress пытается приблизить все точки данных, используя один полином, это не даст хороший результат, когда данные не связаны единой полиномиальной зависимостью. Например, предположим, ожидается, что зависят линейно от x в диапазоне от x1 до x10 и ведут себя подобно кубическому полиному в диапазоне от x11 до x20. Если используется regress с n = 3, можно получить хорошее приближение для второй половины, но ужасное — для первой. Функция loess облегчает эти проблемы, выполняя локальное приближение. Вместо создания одного полинома, как это делает regress, loess создаёт различные полиномы второго порядка в зависимости от расположения на кривой.

Она делает это, исследуя данные в малой окрестности точки, представляющей интерес. Аргумент span управляет размером этой окрестности. По мере того как диапазон становится большим, loess становится эквивалентным regress с n = 2. Хорошее значение по умолчанию — span = 0.75.

Рисунок 10 показывает, как span влияет на приближение, выполненное функцией loess. Заметьте, что меньшее значение span лучше приближает флуктуации данных. Большее значение span сглаживает колебания данных и создаёт более гладкую приближающую функцию.

 

Полиномиальная регрессия означает приближение данных (xi, yi) полиномом k-й степени А(х)=а+bх+сх2+dх3+…+hxk (рис. 15.14). При k=1 полином является прямой линией, при k=2 – параболой, при k=3 – кубической параболой и т. д. Как правило, на практике применяются k< 5.

Для построения регрессии полиномом k-й степени необходимо наличие по крайней мере (k+1) точек данных.

В Mathcad полиномиальная регрессия осуществляется комбинацией встроенной функции regress и полиномиальной интерполяции (см. разд. 15.1.2).

  • regress(x, y, k) – вектор коэффициентов для построения полиномиальной регрессии данных;
  • interp(s, x, y, t) – результат полиномиальной регрессии;
    • s=regress(x, y, k);
    • х – вектор действительных данных аргумента, элементы которого расположены в порядке возрастания;
    • у – вектор действительных данных значений того же размера;
    • k – степень полинома регрессии (целое положительное число);
    • t – значение аргумента полинома регрессии.

Для построения полиномиальной регрессии после функции regress Вы обязаны использовать функцию interp.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.