![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Измерение колеблемости в рядах динамики
Как уже отмечалось, уровни ряда динамики формируются под влиянием различных взаимодействующих факторов, одни из которых определяют тенденцию развития, а другие – колеблемость (вариацию). Изучение колеблемости в рядах динамики как предмета исследования часто является самостоятельной задачей математической статистики. Колебания уровней ряда могут носить разный характер. Исследователи временных рядов всегда пытались классифицировать факторы, вызывающие те или иные колебания, и соответственно выделить типы колебаний. Большинство авторов чаще всего выделяют (наряду с трендом) циклические (долгопериодические), сезонные (обнаруживаемые в рядах, где данные приведены за кварталы или месяцы) и случайные колебания. Для измерения колеблемости уровней в рядах динамики могут использоваться показатели, аналогичные показателям вариации признака: - размах, или амплитуда, отклонений отдельных уровней от их средней (по модулю) или от тренда; - среднее линейное отклонение d (по модулю) отдельных уровней от общей средней или от тренда; - среднее квадратическое отклонение а отдельных уровней от общей средней или от тренда; - относительный показатель колеблемости уровней, аналогичный коэффициенту вариации, При этом важно учитывать, относительно какого показателя (уровня) исследуется колеблемость. Например, можно исследовать колеблемость вокруг среднего уровни ряда у, который на графике выразится прямой, параллельной оси абсцисс. А можно исследовать колебания уровней вокруг линии тренда (или скользящей средней). Различный характер таких колебаний наглядно виден на графике (рис. 3.1). Рис. 3.1. Колебания фактических уровней yi относительно среднего уровня
Рассмотрим традиционный случай расчета среднего квадратического отклонения отдельных уровней yt от общего среднего уровня ряда Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение
В данном случае величина Задача исследования колебаний уровней в рядах динамики сводится к разложению общей колеблемости на составляющие и выделению именно тех колебаний, которые интересуют исследователя. Для решения этой задачи требуется разложить общую сумму квадратов отклонений от средней Имея фактические (эмпирические) уровни ряда у и уровни, выровненные по определенному тренду, yt можно рассчитать следующие суммы квадратов отклонений: 1) 2) 3) Согласно правилу сложения вариации и правилу сложения дисперсий первая сумма равна сумме двух последних: Отсюда, пользуясь величиной В свою очередь, используя
Если уровни ряда являются месячными или квартальными показателями и несут на себе влияние сезонности, то в общей сумме квадратов отклонений уровней ряда от их средней
|