![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Парные регрессии, сводящиеся к модифицированной экспоненте
Все ранее рассмотренные кривые описывают ситуации, когда коэффициент наклона касательной либо возрастает, либо убывает. Однако иногда встречаются данные (это касается в первую очередь технико-экономических процессов), которые необходимо описывать кривыми, имеющими точку перегиба, то есть точку, где рост наклона касательной сменяется падением или, наоборот, падение сменяется ростом. При этом динамика явления такова: – вначале рост довольно медленный, затем он убыстряется; – промежуточный период роста сменяется третьим периодом; – третий период – уменьшение роста и приближение к уровню насыщения. Широко распространенными кривыми, обладающими точкой перегиба и наиболее точно описывающими процессы полного цикла, являются так называемые S -образные кривые, среди которых наибольшее применение получили логистическая кривая (кривая Перла) и кривая Гомпертца. Кривая Гомпертца и логистическая кривая могут быть получены из другой кривой, известной как модифицированная экспонента, тем же способом, каким были получены из обычной линейной регрессии кривые, рассмотренные ранее. Модифицированная экспонента задается тремя параметрами (вместо двух параметров при линейной зависимости), и ее уравнение отличается от простой экспоненты:
лишь дополнительными слагаемыми. Таким образом,
Эта функция сама по себе не имеет точки перегиба и в записи Обычная процедура наименьших квадратов непосредственно к модифицированной экспоненте неприложима, однако существует и эффективный метод определения параметров этой кривой. Теория, лежащая в основе описываемого ниже метода определения параметров модифицированной экспоненты, в пособии не рассматривается, однако с ней можно ознакомиться по другим источникам. Следуя этому методу, сначала определяют параметр с, а затем параметры a и b. Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение Приведем формулы для определения параметров модифицированной экспоненты в порядке их вычисления:
В табл. 2.4 и ниже приводятся вычисления, необходимые для нахождения параметров a, b и c модифицированной кривой, для примера, рассмотренного в предыдущих разделах. В результате из приведенных уравнений получим
Таким образом, уравнение модифицированной экспоненты будет иметь вид
Модифицированная экспонента, как отмечалось, служит базовой кривой, на основе которой с помощью некоторых преобразований получаются используемые чаще логистическая кривая и кривая Гомпертца. Логистическая кривая может задаваться уравнением
Произведем обратное преобразование левой и правой частей этого уравнения: Последнее уравнение имеет вид модифицированной экспоненты, поэтому ее параметры с, b и а можно найти по приведенным ранее формулам. Логистическая кривая имеет S -образную форму с точкой перегиба, равной
Значение
Кривая Гомпертца несимметрична и определяется уравнением
Если логарифм параметра b отрицателен, то верхний предел для ординаты равен a, нижний равен 0; если он положителен, то асимптота проходит ниже кривой. Возьмем от обеих частей уравнения натуральный логарифм, получим
что приводит к виду
где Последнее уравнение имеет вид модифицированной экспоненты, поэтому параметры Следует отметить, что на практике при оценивании параметров рассматриваемых кривых часто прибегают к упрощенным методам оценивания, в частности к методу трех точек. Допустим, логистическая кривая задана в виде и нет полного ряда данных. Тогда для оценки параметров можно воспользоваться методом трех точек. Причем подбор параметров производят так, чтобы кривая прошла через некоторые заданные точки: уровни ряда динамики в начале и конце ряда. Непременным условием является равенство расстояний между этими уровнями. Итак, нам необходимо провести логистическую кривую через три точки, соответствующие уровням получим
Определим теперь разности
Отсюда Таким образом Далее определим значение выражения После ряда преобразований получим
Откуда
Наконец, исходя из Для иллюстрации допустим, что нам необходимо провести логистическую кривую через точки: Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:— Разгрузит мастера, специалиста или компанию; — Позволит гибко управлять расписанием и загрузкой; — Разошлет оповещения о новых услугах или акциях; — Позволит принять оплату на карту/кошелек/счет; — Позволит записываться на групповые и персональные посещения; — Поможет получить от клиента отзывы о визите к вам; — Включает в себя сервис чаевых. Для новых пользователей первый месяц бесплатно. Зарегистрироваться в сервисе
Откуда
Таким образом,
Как было показано, непременным условием применения данного метода является равенство расстояний по оси времени между выбранными для подбора кривой точками. Если это условие не соблюдено, то подбор кривой также может быть осуществлен, однако для этого необходима дополнительная информация, а именно оценка значения асимптоты. Значение асимптоты можно в ряде случаев оценить или получить вне данного статистического наблюдения, например исходя из существа развития самого изучаемого явления и различного рода ограничений, сопутствующих ему. Пусть оценка параметров логистической кривой производится на основе заданного значения асимптоты а* и ординат двух первых точек кривой. Тогда
исходя из того, что получим
|