Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Задачи, приводящие к понятию дифференциального уравнения.
Задача 1. Найти кривую, проходящую через точку , зная, что отрезок любой касательной к ней, заключённый между осями координат, делится в точке касания пополам. Пусть произвольная точка кривой . Для определённости расположим кривую в первой координатной четверти (Рис. 4). Согласно геометрическому смыслу первой производной имеем: . Из треугольника . С другой стороны . По рисунку Тогда или получим дифференциальное уравнение с начальным условием .
Рис. 4
Задача 2. Гармонический осциллятор. Рассмотрим две модели гармонического осциллятора. 1. Гармонический осциллятор с вязким трением под воздействием силы (Рис. 5). Его характеристики: – масса, – жёсткость пружины, – вязкость демпфера. По второму закону Ньютона: Пусть точка отвечает ненапряжённому состоянию пружины. Тогда , , . Получаем дифференциальное уравнение
Рис. 5 Гармонический осциллятор с вязким трением под воздействием силы 2. Гармонический осциллятор с вязким трением под воздействием смещения (Рис. 6). Его характеристики: – масса, – жёсткость пружины, – вязкость демпфера. По второму закону Ньютона: Пусть точка отвечает ненапряжённому состоянию пружины. Тогда , , . Получаем дифференциальное уравнение
Рис. 6 Гармонический осциллятор с вязким трением под воздействием смещения
|