![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Векторное произведение.
1) |`с | = с = ab sin j (площади параллелограмма, построенного на ` а и` b; j – угол между векторами) 2) ` с перпендикулярен ` а и` b 3) векторы` а, `b, `с после приведения к общему началу образуют (так же как `i, ` j, `к) правую тройку векторов. (Это значит, что если смотреть с конца вектора` с на векторы ` а и ` b, то вектор ` а для совмещения с вектором ` b поворачивается против часовой стрелки через наименьший угол.) Свойства векторного произведения. 1) ` а ´ `b = -`b ´ `а (векторное произведение не обладает переместительным свойством). 2) `а ´ `b = 0 если `а = 0, `b = 0 или `а ||`b (j = 0) 3) (m`а) ´ `b = `а ´ (m`b) = m`а ´ `b (сочетательное свойство по отношению к скалярному множителю) 4) `а ´ (`b +`с) = `а ´ `b +`а ´ `с (распределительное свойство) Легко убедиться (см. свойства 1 и 2), что `i `i
если два вектора перемножаются «против часовой стрелки» (положительное направление обхода окружности) – третий вектор получается «с плюсом»: ` j ´ `к =`i; если “по часовой” – с минусом: ` к ´ ` j = –`i.
Найдем векторное произведение, если вектора заданы своими координатами. `а ´ `b = (`iax + `jay + `кaz) (`ibx + `jby + `кbz) = `i ´ `iaxbx + +`j ´ `iaybx +`к ´ `jazbx +`i ´ `jaxby +`j ´ `jayby + `к ´ `jazby +`j ´ `к axbz + +`j ´ `кaybz +`к ´ `кazbz =`i (aybz – azby) – `j (axbz – azbx) +`к (axby – aybx). Сравнив полученное выражение с (1.6), легко убедиться в том, что векторное произведение векторов ` а и` b, заданных в разложении по декартову базису, удобнее всего вычислять по формуле Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение
Контрольные вопросы. 1) Что называется векторным произведением векторов? Каковы его свойства и выражение через координаты векторой-сомножителей? 2) Каковы условия коллинеарности и перпендикулярности двух векторов и как они выражаются через координаты векторов?
1.5.4. Смешанное (векторно – скалярное) произведение векторов.
Смешанным произведением векторов ` а, `b, `с называют скалярное произведение вектора ` а ´ `b на вектор ` с, т.е. `а`b`с = (`а ´ `b)`с (1.23) Свойства смешанного произведения: 1) смешанное произведение равно нулю, если: а) хоть один из перемножаемых векторов равен нулю; б) два из перемножаемых векторов коллинеарны; в) перемножаемые векторы компланарны. 2) смешанное произведение не изменится, если знаки векторного и скалярного произведения поменять местами, т.е (`а ´ `b)`с = `а (`b ´ `с). 3) смешанное произведение не меняется, если перемножаемые векторы переставлять в круговом порядке: ` а `b`с = `b`с`а = `с`а `b 4) при перестановке двух любых векторов смешанное произведение меняет знак: ` b`а `с = –`а `b`с; `с `b`а = –`а `b`с; `а `с`b = –`а `b`с Если векторы заданы своими координатами, то:
(Компланарные вектора параллельны одной плоскости; векторное произведение двух векторов даст вектор, перпендикулярный этой плоскости и, соответственно, третьему вектору и их скалярное произведение будет равно нулю). Объемы призмы V1 и пирамиды V2 построенных на ` а, `b, `с определятся так: V1 = |`а `b`с | и V2 = 1 / 6 |`а `b`с | (1.26).
Контрольные вопросы. 1) Что называется смешанным произведением векторов? Каковы его свойства и выражение через координаты векторов-сомножителей? 2) Каковы условия компланарности трёх векторов и как они выражаются через координаты векторов?
1.5.5. Собственные значения и собственные векторы матрицы. Характеристическим уравнением матрицы Корни Система уравнений Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:— Разгрузит мастера, специалиста или компанию; — Позволит гибко управлять расписанием и загрузкой; — Разошлет оповещения о новых услугах или акциях; — Позволит принять оплату на карту/кошелек/счет; — Позволит записываться на групповые и персональные посещения; — Поможет получить от клиента отзывы о визите к вам; — Включает в себя сервис чаевых. Для новых пользователей первый месяц бесплатно. Зарегистрироваться в сервисе
Пример: Найти собственные значения и собственные векторы матрицы:
Теперь можно найти собственные векторы матрицы
I.
Используя (1.10) найдём II.
(1) - разделим 3-ий столбец на 2, (2) - заменим строки столбцами, (3) - вычтем из 2-ой строки 1-ую, (4 - вычтем из 3-ей строки 2-ую, используя (1.10) найдём:. III. Аналогично вычисляется собственный вектор и для
Контрольные вопросы. 1) Что называют характеристическим уравнением матрицы? 2) Что такое характеристические числа (собственные значения) матрицы? 3) Что такое собственный вектор матрицы?
|