Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Линейные преобразования.
Говорят, что в линейном пространстве R задано преобразование А, если каждому вектору по некоторому правилу ставится в соответствие вектор А . Преобразование называют линейным, если для любых х и у и любого действительного числа выполняются равенства А(х+у)=Ах+Ау и А( х)= Ах (его можно рассматривать как линейное преобразование координат точки или вектора- переход к другим координатам). Пусть в пространстве R3 с базисом задано линейное преобразование А. Каждый из векторов можно единственным образом разложить по векторам базиса матрица линейного преобразования А в базисе . (аналогично - в пространстве при ). Действия над линейными преобразованиями сводятся к действиям над их матрицами. Например, если вектор переводится в вектор преобразованием А, а вектор переводится в вектор преобразованием В, это равносильно преобразованию С, переводящему вектор в вектор (его называют произведением составляющих преобразований). Матрица этого линейного преобразования С = ВА. Пример: Даны два линейных преобразования и или и , где и Искомое преобразование С определится произведением А и В и . Вид матрицы линейного преобразования определяется выбором базиса. Если за базис принять совокупность собственных векторов (см. 1.5.5), то матрица линейного преобразования принимает диагональный вид, причём на главной диагонали стоят собственные значения. Например, в R2 это матрица , линейное преобразование: . Число собственных векторов может быть меньше размерности пространства. В этом случае простейшая матрица линейного преобразования формируется иначе. Рассмотрим в n -мерном базисе преобразование F вида:
Матрица этого преобразования в базисе обозначается и называется n -мерной жордановой клеткой соответствующей числу .
Говорят, что матрица А имеет каноническую жорданову форму, если по главной диагонали её расположены жордановы клетки, а все остальные элементы - нули.
При этом возможно, что или для некоторых номеров i и j.
Контрольные вопросы.
1) Что называют линейным преобразованием? 2) Что называют матрицей линейного преобразования? 3) Чем определяется вид матрицы линейного преобразования?
|