Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Типовой отчет. Вычислить интеграл по формулам прямоугольников, трапеций, Симпсона, Гаусса (с числом узлов m= 3), если отрезок интегрирования разбит на n = 2
Вычислить интеграл по формулам прямоугольников, трапеций, Симпсона, Гаусса (с числом узлов m= 3), если отрезок интегрирования разбит на n = 2, n = 4, n = 8 равных частей. Определить погрешность результата методом двойного пересчета и сравнить приближенные значения интеграла с точным . В таблицах представлены приближенные значения интеграла Ji, оценка погрешности вычислений d, фактическая погрешность dф для разных значений n числа частичных отрезков для четырех методов интегрирования.
Метод прямоугольников.
Метод трапеций.
Метод Симпсона.
Метод Гаусса.
Варианты.
Вычислить заданные интегралы по формулам прямоугольников, трапеций, Симпсона, Гаусса (с числом узлов m= 3), если отрезок интегрирования разбит на n = 2, n = 4, n = 8 равных частей. Определить погрешность результата методом двойного пересчета и сравнить приближенные значения интеграла с точным значением J.
|