Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Methods of iteration.
Simple iteration.
AX = B, consider A = C+D, det C ¹ 0, then X = FX+G, F = C-1D, G = C-1B.
(1)
Let we find initial approximation: X (0) =
Next approximation we can find as X(k+1) = FX(k)+G (2)
Zeidel’s method of iteration.
On (k)-th step we use not only x(k–1), but x(k), which are already calculated.
Numerical solution of nonlinear systems. F1(x1, x2,..., xn)=0 F2(x1, x2,..., xn)=0 ...........
Fn(x1, x2,..., xn)=0 Consider two-measured system: f1(x1, x2)=0 (1) Let we find bad approximation x1(0), x2(0)
f2(x1, x2)=0
Let’s try to find corrections: x1=x1(0)+ d1; x2=x2(0)+ d2; put them in (1): f1(x1(0)+ d1, x2(0)+ d2)=0
f2(x1(0)+ d1, x2(0)+ d2)=0
Decompose according to Tailor:
Consider only linear part: (2)
We obtain system with variables d1, d2 So, we find first approximation: x1(1)=x1(0)+ d1; x2(1)=x2(0)+ d2; x1=x1(1)+ d1(1); x2=x2(1)+ d2(1); and so on.
Numerical solution of differential equations
Ordinary differential equations. Simplest form of O.D.E.
Analytic solution: . Digital solution presents the table of function:
|