Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Пример. 1. Если а > 0, то интеграл вида рационализируется подстановкой .






     

    2. Подстановки Эйлера

    1. Если а > 0, то интеграл вида рационализируется подстановкой .

    2. Если a < 0 и c > 0, то интеграл вида рационализируется подстановкой .

    3. Если a < 0, а подкоренное выражение раскладывается на действительные множители a (x – x1)(x – x2), то интеграл вида рационализируется подстановкой .

    Отметим, что подстановки Эйлера неудобны для практического использования, т.к. даже при несложных подынтегральных функциях приводят к весьма громоздким вычислениям.

    3. Метод неопределенных коэффициентов.

    Рассмотрим интегралы следующих трех типов:

    где P(x) – многочлен, n – натуральное число.

    Причем интегралы II и III типов могут быть легко приведены к виду интеграла I типа.

    Интегралы типа I можно вычислять, пользуясь формулой

    ,

    где Q(x) - некоторый многочлен, степень которого ниже степени многочлена P(x), а l - некоторая постоянная величина.

    Для нахождения неопределенных коэффициентов многочлена Q(x), степень которого ниже степени многочлена P(x), дифференцируем обе части данного выражения, затем умножают на и, сравнивая коэффициенты при одинаковых степенях х, определяют l и коэффициенты многочлена Q(x).

    Данный метод выгодно применять, если степень многочлена Р(х) больше единицы. В противном случае можно успешно использовать методы интегрирования рациональных дробей, рассмотренные выше, т.к. линейная функция является производной подкоренного выражения.






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.