Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Пример. Рассмотрим теперь методы интегрирования простейших дробей IV типа.
= = = Рассмотрим теперь методы интегрирования простейших дробей IV типа. Сначала рассмотрим частный случай при М = 0, N = 1. Тогда интеграл вида можно путем выделения в знаменателе полного квадрата представить в виде . Сделаем следующее преобразование: . Второй интеграл, входящий в это равенство, будем брать по частям. Обозначим: Для исходного интеграла получаем: Полученная формула называется рекуррентной. Если применить ее n-1 раз, то получится табличный интеграл . Вернемся теперь к интегралу от элементарной дроби вида IV в общем случае. = = В полученном равенстве первый интеграл с помощью подстановки t = u2 + s приводится к табличному , а ко второму интегралу применяется рассмотренная выше рекуррентная формула. Несмотря на кажущуюся сложность интегрирования элементарной дроби вида IV, на практике его достаточно легко применять для дробей с небольшой степенью n, а универсальность и общность подхода делает возможным очень простую реализацию этого метода на ЭВМ.
|