Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод подстановки (замены переменной)






Метод интегрирования подстановкой заключается во введении новой переменной интегрирования. При этом исходный интеграл приводится к новому интегралу, который является либо табличным, либо сводящимся к нему.

Если требуется найти интеграл и отыскание первообразной при этом вызывает затруднение, то часто оказывается удобным произвести замену переменной интегрирования, полагая x = j(t) и dx = j¢ (t)dt в результате получим:

 

Примеры. Найти неопределенный интеграл:

1. .

Сделаем замену t = sinx, dt = cosxdt.

2.

Замена Получаем:

 

Интегрирование по частям.

 

Этот метод основан на известной формуле производной произведения:

(uv)¢ = u¢ v + v¢ u,

где u и v – некоторые функции от х.

В дифференциальной форме: d(uv) = udv + vdu

Проинтегрировав, получаем: , а в соответствии с приведенными выше свойствами неопределенного интеграла:

или ;

Получили формулу интегрирования по частям, которая позволяет находить интегралы многих элементарных функций.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.