Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Пример. 2. Интегрирование дробно-рациональных функций
= = = = = . 2. Интегрирование дробно-рациональных функций. Отношение двух многочленов (Pm(x) – многочлен степени m, а Qn(x) – многочлен степени n) – называется дробно-рациональной функцией (рациональной дробью). Рациональная дробь называется правильной, если степень многочлена числителя меньше степени многочлена знаменателя, т.е. m < n, в противном случае рациональная дробь – неправильная. Имеет место утверждение: всякую неправильную рациональную дробь путём деления числителя на знаменатель можно представит в виде суммы многочлена и правильной рациональной дроби, т.е. Например, - неправильная рациональная дробь. Разделим числитель на знаменатель 6x5 – 8x4 – 25x3 + 20x2 – 76x – 7 3x3 – 4x2 – 17x + 6 6x5 – 8x4 – 34x3 + 12x2 2x2 + 3 9x3 + 8x2 – 76x - 7 9x3 – 12x2 – 51x +18 20x2 – 25x – 25 Получим частное и остаток . Поэтому = + . Теорема. Если - правильная рациональная дробь, знаменатель Q(x) которой представлен в виде произведения линейных и квадратичных множителей Q(x) = , то эта дробь может быть представлена в виде суммы простейших дробей: где Ai, A2, …, B1, B2, …, M1, N1, …, R1, S1, … – некоторые постоянные величины. При интегрировании рациональных дробей прибегают к разложению исходной дроби на элементарные. Для нахождения величин Ai, Bi, Mi, Ni, Ri, Si применяют так называемый метод неопределенных коэффициентов, суть которого состоит в том, что для того, чтобы два многочлена были тождественно равны, необходимо и достаточно, чтобы были равны коэффициенты при одинаковых степенях х. Применение этого метода рассмотрим на конкретном примере. Так как (, то Приводя к общему знаменателю и приравнивая соответствующие числители, получаем:
Таким образом,
|