![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Свободные затухающие колебания
В § 9.45 мы предполагали, что электрическое сопротивление катушки, включенной в контур, равно нулю. Создать идеальный колебательный контур на практике не удается, так как и катушка индуктивности и соединительные провода имеют отличное от нуля активное (омическое) сопротивление R (через R обозначим их суммарное сопротивление). Таким образом, в реальном колебательном контуре (см. рисунок 57) наряду с процессом перехода энергии электрического поля конденсатора в энергию магнитного поля катушки и обратно происходит выделение тепла Джоуля-Ленца на сопротивлении R. Электромагнитные колебания в реальном контуре описываются уравнением (45.1):
q ¢ ¢ +
Вводя обозначения
перепишем уравнение (46.1)
q ¢ ¢ + 2b q ¢ +w02 q = 0. (46.3)
В уравнении (46.3) величину w0 называют собственной частотой контура, b - коэффициентом затухания. Так как в схеме, приведенной на рисунке 57, внешние переменные ЭДС Е отсутствуют, а R ¹ 0, то уравнение (46.3) описывает свободные затухающие колебания (колебательная система, в которой происходят затухающие колебания, называется диссипативной). При b < w0 решение этого однородного дифференциального уравнения второго порядка имеет вид:
q (t) = q 0
где w = q 0 и a - постоянные, определяемые из начальных условий, а величина
А = q 0
- амплитуда затухающих колебаний. Зависимость (46.4) показана на рисунке 58 сплошной линией, а зависимость (46.6) - штриховыми линиями. Затухающие колебания не имеют определенного значения периода колебаний. Но при малом затухании небольшие интервалы зависимости q (t) можно принять за отрезки соответствующей синусоиды и считать затухающие колебания как гармонические колебания, амплитуда которых непрерывно уменьшается с течением времени по закону q 0 Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение
Т = С увеличением сопротивления контура R частота w уменьшается, а период колебаний Т увеличивается. Через время Т достигаются максимальные и минимальные значения заряда (а также силы тока и напряжения). Разделив функцию (46.4) на емкость С, получим напряжение на конденсаторе: U(t) =
Чтобы найти силу тока, продифференцируем (46.4) по времени
I(t)= q ¢ = q 0
Преобразуем выражение в квадратных скобках к косинусу. Для этого умножим и разделим это выражение на w0 ( -b/w0 = cosd, w/w0 = sind. (46.9)
После этого выражение для силы тока примет вид
I(t)= w q 0
Из (46.9) следует, что угол d лежит во второй четверти (p/2 < d < p). Это означает, что при наличии активного сопротивления R ток в контуре опережает по фазе напряжение (46.8) на конденсаторе более чем на p/2 (при R=0 опережение составляет d = p/2).
Графики зависимостей U(t)иI(t) имеют вид, аналогичный зависимости q (t) (см. рисунок 58). Промежуток времени, в течение которого амплитуда затухающих колебаний уменьшается в е раз, называется временем релаксации (е» 2, 72). Из формулы (46.4) легко определить, что t = 1/b. (46.11)
Затухание колебаний принято характеризовать логарифмическим декрементом затухания. Он определяется как натуральный логарифм отношения двух значений амплитуд заряда (или тока, напряжения), взятых через период колебания Т: l =
где l - логарифмический декремент затухания; Ne - число колебаний, совершаемых за время уменьшения амплитуды в е раз. Логарифмический декремент затухания - постоянная для данной колебательной системы величина. Если затухание мало (b < < w0), то w» w0 = 1/
l» b×
Для характеристики затухания контуров вводят понятие добротности колебательного контура Q, пропорциональной отношению энергии, запасенной в контуре, к ее изменению DW за период Т:
Q = 2p
Энергия, равная DW = W(t) - W(t + T), рассеивается на сопротивлении R за время Т в виде теплоты Джоуля-Ленца. В реальных контурах значение добротности лежит в интервале 50 – 200. Добротность также равна Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:— Разгрузит мастера, специалиста или компанию; — Позволит гибко управлять расписанием и загрузкой; — Разошлет оповещения о новых услугах или акциях; — Позволит принять оплату на карту/кошелек/счет; — Позволит записываться на групповые и персональные посещения; — Поможет получить от клиента отзывы о визите к вам; — Включает в себя сервис чаевых. Для новых пользователей первый месяц бесплатно. Зарегистрироваться в сервисе
Q =
где l - логарифмический декремент затухания. Из формулы (46.15) следует, что добротность пропорциональна числу колебаний Ne, совершаемых системой за время релаксации. Чем меньше затухание, тем больше Q. При слабом затухании (b < < w0) согласно (46.13) добротность равна Q = В заключение отметим, что при увеличении коэффициента затухания b период затухающих колебаний растет, и при b ³ w0 вместо колебаний происходит апериодический разряд конденсатора. Сопротивление контура, при котором колебательный процесс переходит в апериодический, называется критическим. Значение критического сопротивления Rкр определяется из условия b = w0 и, подставляя значения b и w0 из (46.2), имеем
Rкр =
Для получения длительно существующих электрических (также и механических) колебаний большое значение имеют так называемые автоколебательные системы. Автоколебательные системы реальные устройства, сопротивление которых не равно нулю. В автоколебательных системах незатухающие колебания возникают под влиянием процессов, происходящих внутри системы, и для их поддержания не требуется никаких внешних воздействий. В состав автоколебательной системы входит источник энергии (в случае механических колебаний – сжатая пружина, поднятый груз и т.д., в случае электрических колебаний – источник тока). Этот источник периодически включается самой системой и вводит в нее определенную энергию, компенсирующую потери на выделение тепла Джоуля-Ленца, что и делает колебания незатухающими.
|