Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Свободные затухающие колебания
В § 9.45 мы предполагали, что электрическое сопротивление катушки, включенной в контур, равно нулю. Создать идеальный колебательный контур на практике не удается, так как и катушка индуктивности и соединительные провода имеют отличное от нуля активное (омическое) сопротивление R (через R обозначим их суммарное сопротивление). Таким образом, в реальном колебательном контуре (см. рисунок 57) наряду с процессом перехода энергии электрического поля конденсатора в энергию магнитного поля катушки и обратно происходит выделение тепла Джоуля-Ленца на сопротивлении R. Электромагнитные колебания в реальном контуре описываются уравнением (45.1):
q ¢ ¢ + q ¢ + q = 0. (46.1)
Вводя обозначения = 2b, = w02, (46.2)
перепишем уравнение (46.1)
q ¢ ¢ + 2b q ¢ +w02 q = 0. (46.3)
В уравнении (46.3) величину w0 называют собственной частотой контура, b - коэффициентом затухания. Так как в схеме, приведенной на рисунке 57, внешние переменные ЭДС Е отсутствуют, а R ¹ 0, то уравнение (46.3) описывает свободные затухающие колебания (колебательная система, в которой происходят затухающие колебания, называется диссипативной). При b < w0 решение этого однородного дифференциального уравнения второго порядка имеет вид:
q (t) = q 0 cos(wt + a), (46.4)
где w = = , (46.5) q 0 и a - постоянные, определяемые из начальных условий, а величина
А = q 0 (46.6)
- амплитуда затухающих колебаний. Зависимость (46.4) показана на рисунке 58 сплошной линией, а зависимость (46.6) - штриховыми линиями. Затухающие колебания не имеют определенного значения периода колебаний. Но при малом затухании небольшие интервалы зависимости q (t) можно принять за отрезки соответствующей синусоиды и считать затухающие колебания как гармонические колебания, амплитуда которых непрерывно уменьшается с течением времени по закону q 0 . В этом случае условный период затухающих колебаний равен:
Т = = . (46.7) С увеличением сопротивления контура R частота w уменьшается, а период колебаний Т увеличивается. Через время Т достигаются максимальные и минимальные значения заряда (а также силы тока и напряжения). Разделив функцию (46.4) на емкость С, получим напряжение на конденсаторе: U(t) = cos(wt + a) = U0 cos(wt + a), (46.8)
Чтобы найти силу тока, продифференцируем (46.4) по времени
I(t)= q ¢ = q 0 [- bcos(wt + a) - wsin(wt + a)].
Преобразуем выражение в квадратных скобках к косинусу. Для этого умножим и разделим это выражение на w0 ( = w0), а затем введем угол d по формулам -b/w0 = cosd, w/w0 = sind. (46.9)
После этого выражение для силы тока примет вид
I(t)= w q 0 cos(wt + a + d). (46.10)
Из (46.9) следует, что угол d лежит во второй четверти (p/2 < d < p). Это означает, что при наличии активного сопротивления R ток в контуре опережает по фазе напряжение (46.8) на конденсаторе более чем на p/2 (при R=0 опережение составляет d = p/2).
Графики зависимостей U(t)иI(t) имеют вид, аналогичный зависимости q (t) (см. рисунок 58). Промежуток времени, в течение которого амплитуда затухающих колебаний уменьшается в е раз, называется временем релаксации (е» 2, 72). Из формулы (46.4) легко определить, что t = 1/b. (46.11)
Затухание колебаний принято характеризовать логарифмическим декрементом затухания. Он определяется как натуральный логарифм отношения двух значений амплитуд заряда (или тока, напряжения), взятых через период колебания Т: l = = bТ = = , (46.12)
где l - логарифмический декремент затухания; Ne - число колебаний, совершаемых за время уменьшения амплитуды в е раз. Логарифмический декремент затухания - постоянная для данной колебательной системы величина. Если затухание мало (b < < w0), то w» w0 = 1/ и согласно (46.12)
l» b× = = = . (46.13)
Для характеристики затухания контуров вводят понятие добротности колебательного контура Q, пропорциональной отношению энергии, запасенной в контуре, к ее изменению DW за период Т:
Q = 2p . (46.14)
Энергия, равная DW = W(t) - W(t + T), рассеивается на сопротивлении R за время Т в виде теплоты Джоуля-Ленца. В реальных контурах значение добротности лежит в интервале 50 – 200. Добротность также равна
Q = = p Ne, (46.15)
где l - логарифмический декремент затухания. Из формулы (46.15) следует, что добротность пропорциональна числу колебаний Ne, совершаемых системой за время релаксации. Чем меньше затухание, тем больше Q. При слабом затухании (b < < w0) согласно (46.13) добротность равна Q = . (46.16) В заключение отметим, что при увеличении коэффициента затухания b период затухающих колебаний растет, и при b ³ w0 вместо колебаний происходит апериодический разряд конденсатора. Сопротивление контура, при котором колебательный процесс переходит в апериодический, называется критическим. Значение критического сопротивления Rкр определяется из условия b = w0 и, подставляя значения b и w0 из (46.2), имеем
Rкр = . (46.17)
Для получения длительно существующих электрических (также и механических) колебаний большое значение имеют так называемые автоколебательные системы. Автоколебательные системы реальные устройства, сопротивление которых не равно нулю. В автоколебательных системах незатухающие колебания возникают под влиянием процессов, происходящих внутри системы, и для их поддержания не требуется никаких внешних воздействий. В состав автоколебательной системы входит источник энергии (в случае механических колебаний – сжатая пружина, поднятый груз и т.д., в случае электрических колебаний – источник тока). Этот источник периодически включается самой системой и вводит в нее определенную энергию, компенсирующую потери на выделение тепла Джоуля-Ленца, что и делает колебания незатухающими.
|