Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Этапы инициации репликации на ОНР oriC
Для инициации репликации в ОНР oriC необходимо, чтобы матрица ДНК находилась в сверхскрученной кольцевой форме. Первой стадией инициации является образование начального “преинициирующего” комплекса, в котором белок DnaA в мономерной форме связывается с 4 более сильными из 5 блоков DnaA (R1-R4). Связывание DnaA вызывает изгибание ДНК на 40о в каждом из этих блоков (рис. 3.3). Первичный комплекс содержит также белок Fis, ассоциированный с узнаваемым им сайтом рядом с нонамером R2. Дальнейшая сборка комплекса инициации требует кооперативной мультимеризации многих молекул белка DnaA. Предполагается, что Fis ингибирует продвижение инициации до тех пор, пока на oriC не соберется достаточный набор молекул DnaA.
Рис. 3.3. Цикл инициации репликации хромосомы E. coli
После этого белок Fis покидает область oriC, белок DnaA прочно связывается со слабым сайтом R3, и в комплекс входит фактор IHF, который вызывает очень сильное изгибание ДНК. Такой же эффект достигается в отсутствие IHF при более высокой концентрации DnaA. В результате образуется искривленный компактный нуклеопротеиновый комплекс ДНК oriC, содержащий около 20 молекул DnaA. В присутствии ещё одного гистоноподобного белка HU при высокой концентрации АТФ (более 20 мМ) и при физиологической температуре (37о) образуется “открытый” комплекс инициации, в котором расплетаются АТ-богатые области на левом фланге oriC. В этом процессе должна участвовать активная форма DnaA-АТФ, но гидролиз связанного АТФ не происходит, так что его энергия не используется для расплетания нитей ДНК. Возможно, причиной локального плавления ДНК являются напряжения, возникающие в нуклеопротеиновом комплексе с DnaA-АТФ. Расплетание начинается в правом 13-мере R, а затем распространяется на элементы L и М. Следует учесть также, что в процессе расплетания ДНК участвуют дополнительные сайты связывания белка DnaA в АТ-богатых участках ДНК, названные пентамерными блоками DnaA-АТФ и имеющие консенсусную последовательность 5’-AGatct. Эти сайты имеют очень низкое сродство к DnaA-АТФ в днДНК и гораздо более высокое сродство в расплетенной онДНК. Высказано предположение, что вначале DnaA-АТФ связывается с высоким сродством с сайтом R1 в днДНК, и из этой якорной области начинается кооперативное связывание DnaA-АТФ с соседними пентамерными блоками. Это приводит к дестабилизации двойной спирали в АТ-богатой области 13-меров и её расплетанию. Разошедшиеся одиночные нити ДНК стабилизируются комплексом DnaA-АТФ, имеющим к ним высокое сродство. В момент начала расплетания с областью oriC связываются 18 мономеров DnaA-АТФ, но в открытом комплексе число связанных комплексов DnaA-АТФ увеличивается до 24-30 за счет взаимодействия с однонитевыми расплетенными участками. Расплавленная область вначале имеет длину 28 п.н., но затем онДНК покрывается белком SSB, и длина области денатурации ДНК увеличивается до 44-46 п.н. Частичное плавление ОНР служит предпосылой для связывания ДНК-геликазы DnaВ, которая вербуется на свободную от белка SSB онДНК в составе комплекса с её погрузчиком DnaС (см. раздел 2.1). В вербовке этого двойного гексамера на oriC участвует сам связанный с ДНК белок DnaA, который взаимодействует N-концевым доменом I с центральной b-областью DnaВ и центральным доменом III с N-концом DnaВ. Для погрузки геликазы DnaВ требуется почти весь белок DnaA, но связывание АТФ с DnaA не является обязательным. С начальным однонитевым пузырьком ДНК длиной 44 н. связываются два гексамера DnaВ-DnaС и увеличивают его длину до 65 н. Гидролиз АТФ в этом комплексе вызывает освобождение DnaС и активацию геликазной активности DnaВ. В результате с расплавленным АТ-богатым участком oriC оказываются связанными два активных гексамерных DnaВ – по одному на 5’-стороне каждой из разошедшихся нитей ДНК. Это, вероятно, обусловлено существованием двух разнонаправленных триад сайтов связывания DnaA-АТФ в каждой из двух нитей и, в конечном итоге, приводит к сборке на ОНР oriC двух дивергентно ориентированных репликативных вилок. Два геликазных комплекса движутся по комплементарным нитям ДНК в направлении 5’®3’ друг мимо друга и взаимодействуют с праймазой DnaG, которая синтезирует затравки РНК вначале для ведущих, а затем отстающих нитей двух разнонаправленных репликативных вилок (рис. 3.4). На праймированных сайтах собираются два скользящих зажима b-субъединиц ДНК-полимеразы III и два димера ее каталитических a-субъединиц. Таким образом, инициация репликации ДНК на oriC завершается образованием двух движущихся в противоположных направлениях репликативных вилок.
Рис. 3.4. Этапы образования двух разнонаправленных репликативных вилок при инициации репликации в области oriC хромосомы E.coli. 1 – связывание белка DnaA, 2 – связывание двойного гексамера DnaВ-DnaС, 3 – погрузка колец белка DnaВ и геликазы DnaG и синтез праймеров для ведущей и отстающей нитей двух репликативных вилок. I – гексамер DnaВ, II – мономер DnaС, III – белок DnaА, IV - блоки DnaА, V – 13-меры, VI – праймеры для ведущей нити (для репликативных вилок, движущихся влево или вправо - на верхней и нижней матричных нитях соответственно), VII – праймеры для отстающей нити (для репликативных вилок, движущихся влево или вправо - на нижней и верхней матричных нитях соответственно).
|