Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Теория удара Лепина
Основные допущения: 1. Ударяющее тело абсолютно жесткое. 2. Материал ударяемого тела следует закону Гука. 3. Ударяемое тело имеет одну степень свободы. 4. Удар неупругий, т.е. ударяющее тело после удара не отскакивает, а движется совместно с ударяемым телом. 5. Кинетическая энергия ударяющего тела полностью переходит в потенциальную энергию деформации ударяемого тела, т.е. можно пренебречь контактными явлениями. 6. Деформация мгновенно распространяется по ударяемой системе, и все ее точки начинают движение одновременно, т.е. можно пренебречь волновыми явлениями.
Рассмотрим упругую систему в виде пружины длиной l и жесткостью c с грузом весом F 1. Пружина образует с горизонтом угол a и под действием веса груза имеет деформацию d. Абсолютно жесткое тело весом F движется со скоростью v под углом b к горизонту. Определим перемещение упругой системы d д после удара (динамическое перемещение). В соответствии с законом сохранения импульса, количество движения системы до и после удара одинаково. Проецируя количество движения на ось a, можно записать:
,
где V 1 – скорость движения системы после соударения:
. (4.1)
Воспользуемся теоремой о кинетической энергии:
T 2 – T 1 = I, (4.2)
где T 1, T 2 – кинетическая энергия в начале и конце ударного взаимодействия соответственно, I - работа всех сил на перемещении во время ударного взаимодействия. Кинетическая энергия системы в начале взаимодействия равна
.
Подставляя сюда вместо V1 выражение (11.1), получим:
, (4.3) где – кинетическая энергия ударяющего тела. В конце ударного взаимодействия система неподвижна, и ее кинетическая энергия T2=0. Работа внешних сил складывается из работы силы тяжести и силы упругости пружины:
.
Работа силы тяжести системы на перемещении, вызванном ударом:
. (4.4)
Рассмотрим зависимость силы упругости F у от перемещения d. По закону Гука : Как видно из графика, работа силы упругости на перемещении, вызванном ударом, определяется
.
Представим жесткость пружины в виде , где d 11 – податливость упругой системы (перемещение точки соударения под действием единичной силы, приложенной по направлению перемещения во время ударного взаимодействия). Тогда работа сил упругости
. (4.5)
Формула (11.2) с учетом выражений (11.3), (11.4) и (11.5) принимает вид:
,
откуда
, , .
Учитывая, что – статическое перемещение (перемещение точки соударения под действием силы тяжести взаимодействующих тел, приложенной статически по направлению перемещения во время ударного взаимодействия):
.
Поскольку корни квадратного уравнения вида равны , то
, .
Таким образом, перемещение при ударе вычисляется по формуле:
, (4.6)
где K д – коэффициент динамичности:
(4.7)
В области упругих деформаций напряжение, возникающее при ударе
. (4.8)
|