Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Алгоритм Бута
В основе алгоритма Бута лежит следующее соотношение, характерное для последовательностей двоичных цифр: , где m и k - номера крайних разрядов в группе из последовательностей единиц. Например . Это означает, что при наличии в множителе групп из нескольких единиц (комбинаций вида 011, 110), последовательное добавление к СЧП множимого с нарастающим весом от (2k до 2m) можно заменить вычитанием из СЧП множимого с весом 2k и прибавлением множимого с весом 2m+1. Алгоритм предполагает выполнение трех операций: сдвиг, сложение и вычитание. Помимо сокращения числа сложений у него есть еще одно достоинство – он в равной степени применим к числам без знака и со знаком. Алгоритм Бута сводится к перекодированию множителя из системы (0, 1) в избыточную систему (-1, 0, 1), из-за чего его часто называют перекодированием Бута: 1 –означает добавление множимого к сумме частичных произведений (СЧП); -1 – вычитание множимого; 0 –не предполагает никаких действий. Реализация алгоритма предполагает последовательный справа налево анализ пар разрядов множителя bibi-1 (для i=0 bi-1считается равным 0).
Деление для компьютера является трудной операцией. Обычно оно реализуется путем многократного прибавления к делимому дополнительного кода делителя.
|