Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Б. Формулы Крамера
Назовем столбцы матрицы следующим образом: первый столбец - , второй столбец - , и т.д., последний столбец - . Составим дополнительных матриц: , , …, , и вычислим их определители и определитель исходной матрицы: , , , …, . Тогда значения неизвестных вычисляются по формулам Крамера: , , …, . Правило Крамера дает исчерпывающий ответ на вопрос о совместности системы: если главный определитель системы отличен от нуля, то система имеет единственное решение, определяемое по вышеприведенным формулам. Если главный определитель системы и все вспомогательные определители равны нулю, то система имеет бесчисленное множество решений. Если главный определитель системы , а хотя бы один вспомогательный определитель отличен от нуля, то система несовместна.
Пример. Решить систему уравнений методом Крамера. , . Тогда , , . Вычисляя определители этих матриц, получаем , , , . И по формулам Крамера находим: , , .
|