Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Ранг матрицы
Рассмотрим прямоугольную матрицу . Если в этой матрице выделить произвольно строк и столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу порядка. Определитель этой матрицы называется минором k-го порядка матрицы . Очевидно, что матрица обладает минорами любого порядка от до наименьшего из чисел и . Некоторые среди них будут равны нулю. Среди всех отличных от нуля миноров матрицы найдется, по крайней мере, один минор, порядок которого будет наибольшим. Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Если ранг матрицы равен , то это означает, что в матрице имеется отличный от нуля минор порядка , но всякий минор порядка, большего чем , равен нулю. Ранг матрицы обозначается через . Очевидно, что выполняется соотношение Ранг матрицы находится либо методом окаймления миноров, либо методом элементарных преобразований. При вычислении ранга матрицы первым способом следует переходить от миноров низших порядков к минорам более высокого порядка. Если уже найден минор порядка матрицы , отличный от нуля, то требуют вычисления лишь миноры порядка, окаймляющие минор , т.е. содержащие его в качестве минора. Если все они равны нулю, то ранг матрицы равен . Элементарным и называются следующие преобразования матрицы: 1) перестановка двух любых строк (или столбцов), 2) умножение строки (или столбца) на отличное от нуля число, 3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число. Две матрицы называются эквивалентными, если одна из них получается из другой с помощью конечного множества элементарных преобразований. Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы и эквивалентны, то это записывается так: . Канонической матрицей называется матрица, у которой в начале главной диагонали стоят подряд несколько единиц (число которых может равняться нулю), а все остальные элементы равны нулю, например, . При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали. Пример 11. Найти методом окаймления миноров ранг матрицы Решение. Начинаем с миноров порядка, (т.е. с элементов матрицы ). Выберем, например, минор (элемент) , расположенный в первой строке и первом столбце. Окаймляя при помощи второй строки и третьего столбца, получаем минор , отличный от нуля. Переходим теперь к минорам порядка, окаймляющим . Их всего два (можно добавить второй столбец или четвертый). Вычисляем их: , . Таким образом, все окаймляющие миноры третьего порядка оказались равными нулю. Ранг матрицы равен двум. Пример 12. Найти ранг матрицы и привести ее к каноническому виду. Решение. Из второй строки вычтем первую и переставим эти строки: . Теперь из второй и третьей строк вычтем первую, умноженную соответственно на и : ; из третьей строки вычтем вторую, при этом получим матрицу , которая эквивалентна матрице , так как получена из нее с помощью конечного множества элементарных преобразований. Очевидно, что ранг матрицы равен , а следовательно, и . Матрицу легко привести к канонической. Вычитая первый столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы первой строки, кроме первого, причем элементы остальных строк не изменяются. Затем, вычитая второй столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы второй строки, кроме второго, и получим каноническую матрицу: .
|