Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Заполнение электронами и дырками зон невырожденного полупроводника
Вероятность заполнения энергетического уровня для частицы с полуцелым спином (фермионов), то есть вероятность нахождения электрона на уровне с энергией E, определяется статистикой Ферми-Дирака (1.18)
где k – постоянная Больцмана, F – энергия Ферми.
Для невырожденного полупроводника E-F»kT, »1, тогда можно применить статистику Максвелла-Больцмана:
Для того чтобы рассчитать концентрацию всех свободных электронов, т.е. концентрацию электронов в зоне проводимости, необходимо проинтегрировать по всей зоне проводимости, согласно (1.19). Поскольку функция Больцмана – очень быстро спадающая экспонента, при интегрировании по зоне в качестве верхнего предела использована ∞:
где Nс – эффективная плотность состояний в зоне проводимости или плотность квантовых состояний у дна зоны проводимости в свою зависит от температуры.
Если подставить численные значения универсальных констант, то получим:
В частности для кремния:
Функция распределения Ферми-Дирака для дырок имеет вид:
Функция распределения Максвелла-Больцмана для дырок
Для расчета общего количества свободных дырок выполним интегрирование по валентной зоне:
Эффективные плотности состояний для валентной зоны:
Для кремния Значения эффективной плотности состояний для основных полупроводниковых материалов при комнатной температуре представлены в следующей таблице.
Графически концентрации электронов и дырок можно определить согласно рис. 2.7.
|