Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Задача 2. Даны вершины треугольника ABC: A(– 2, 5), B(10, – 4), C(8, 10)






Даны вершины треугольника ABC: A (– 2, 5), B (10, – 4), C (8, 10). Требуется найти: 1) длину стороны AB; 2) уравнения сторон AB и AC в общем виде и их угловые коэффициенты; 3) угол A в радианах;
4) уравнение медианы AD; 5) уравнение высоты CE и ее длину;
6) уравнение окружности, для которой высота CE есть диаметр и точки пересечения этой окружности со стороной AC.

Решение.

1. Расстояние d между точками A (х 1; y 1) и B (х 2; y 2) вычисляем по формуле:

d = (1)

Применяя (1), находим длину стороны AB:

dAB = = = 15.

2. Уравнение прямой, проходящей через точки A (х 1; y 1) и B (х 2; y 2), имеет вид:

. (2)

Подставив в (2) соответствующие координаты точек A и B находим уравнение прямой (AB):

= ; = ;

= ; 4 y – 20 = – 3 x – 6; 3 x + 4 y – 14 = 0 (AB).

Чтобы найти угловой коэффициент прямой AB (kAB), решим полученное уравнение прямой относительно y:

4 y = 3 x + 14, откуда

Подставляя в (2) координаты точек A и C, находим уравнения прямой (AC):

откуда

3. Если даны две прямые, угловые коэффициенты которых соответственно равны k 1 и k 2, то угол φ между этими прямыми определяется по формуле:

. (3)

Искомый угол A образован прямыми AB и AC, угловые коэффициенты которых найдены ранее в пункте 2. Для определения угла A положим и . Применяя (3), получим:

откуда .

Используя таблицу перевода градусной меры в радианную, получим A = 1, 107 рад.

4. Если AD есть медиана, то точка D является серединой стороны BC. Для вычисления координат точки D применяем формулы деления отрезка на две равные части:

(4)

Подставив в (4) координаты точек B и C, находим координаты точки D:

D (9; 3).

Подставив в (2) координаты точек A (– 2; 5) и D (9; 3), находим искомое уравнение медианы AD:

2 x + 11 y – 51 = 0 (AD).

5. Высота CE перпендикулярна стороне AB. Известно, что если две прямые взаимно перпендикулярны, то их угловые коэффициенты обратны по величине и противоположны по знаку. Следовательно, . Так как то

Уравнение прямой, проходящей через данную точку, имеет вид:

(5)

Подставив в (5) координаты точки C и найденный угловой коэффициент , получим искомое уравнение высоты CE:

Чтобы найти длину CE, определим сперва координаты точки E – точки пересечения высоты CE и прямой AB. Для этого решаем совместно систему уравнений (AB) и (CE):

Решение этой системы дает x = 2 и y = 2. Следовательно, E (2; 2). Длину высоты CE определяем как расстояние между двумя точками по формуле (1).

dCE = = 10.

6. Ура

внение окружности с центром в точке K (a; b) и радиусом R имеет вид:

(xa)2 + (yb)2 = R 2. (6)

По условию, высота CE служит диаметром искомой окружности. Следовательно, центр окружности K является серединой отрезка CE. Используя (4), находим координаты точки K.

K (5; 6).

Так как dCE = 10, то радиус окружности R = 5. Следовательно,
(x – 5)2 + (y – 6)2 = 25 – уравнение искомой окружности. Чтобы найти точки пересечения этой окружности с прямой AC, решаем совместную систему уравнений:

Решив эту систему, получим две точки пересечения C (8; 10) и М (0; 6). Треугольник ABC, медиана AD, высота CE, окружность с центром в точке K и точки ее пересечения со стороной AC построены в системе координат xOy на рис. 1.

 

Рисунок 1

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.