Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Построение доверительных границ при нормальном
распределении. Формулы (221) – (223) позволяют находить доверительные границы, при условии, что функция распределения оценки известна. На практике очень широко используется нормальная функция распределения, т.к. многие оценивающие функции удовлетворяют условиям ЦПТ и, следовательно, имеют нормальное распределение. В такой ситуации за параметр положения нормальной функции распределения принимается точечная оценка ã, такая, что E (ã)= a, а за параметр её рассеивания – выборочный стандарт оценки s ã . По этим данным можно перейти от элементов спектра оценивающей функции ai к параметрам ti стандартной нормальной функции распределения, выполняя нормирование: ti = (ai – ã) / s ã , (224) где i – индекс границы (нижней или верхней). Из соотношения (224) получаем: a н = ã + tн ∙ s ã . (225) a в = ã + t в∙ s ã С другой стороны, формулы (223) позволяют определить стандартизованные границы ti через заданную доверительную вероятность g или уровень значимости a следующим образом: t н = arg(F = (1 – g) / 2) = arg(F = a / 2); t в = arg(F = (1 + g) / 2) = arg(F = 1 – a / 2). При этом, в силу того, что стандартная нормальная функция распределения обладает известным свойством F (t) + F (– t) = 1, стандартизованные границы будут связаны между собой таким соотношением: t н = – t в = – tP, где индекс P принимает значение либо доверительной вероятности g, либо уровня значимости a в зависимости от структуры таблиц. Окончательно, границы симметричного двухстороннего доверительного интервала для нормально распределенной оценивающей функции, параметры которой оценены по выборочным данным, можно построить, объединив все полученные результаты: a н = ã – tP ∙ s ã . (226) a в = ã + tP ∙ s ã Задача 3.4. Среднее арифметическое из 12 -и некоррелированных наблюдений угла равно =36o52'47, 8″, а средняя квадратическая погрешность наблюдений, найденная по этим же данным по формуле Бесселя (215), равна m ″ = 0, 9″. Полагая обе оценки, распределенными нормально, построить с их помощью двухсторонние доверительные интервалы для математического ожидания и стандарта генеральной совокупности на уровне значимости a = 0, 05. Решение.
|