Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Доверительные интервалы оценок параметров и проверка гипотез об их значимости.






Доверительный интервал.

Доверительным называется интервал, который с заданной надежностью покрывает оцениваемый параметр.

Для оценки математического ожидания случайной величины , распределенной по нормальному закону, при известном среднем квадратическом отклонении служит доверительный интервал

 

где - точность оценки, - объем выборки, - выборочное среднее, - аргумент функции Лапласа, при котором

Проверка статистических гипотез.

Поскольку статистика как метод исследования имеет дело с данным, в которых закономерности искажены различными случайными факторами, большинство статистических вычислений сопровождается проверкой некоторых предположений или гипотез об источнике этих данных.

Статистическая гипотеза – это предположение о свойствах случайных величин или событий, которое мы хотим проверить по имеющимся данным.

Нулевая и альтернативная гипотезы.

Нулевая гипотеза – это основное проверяемое предположение, которое обычно формулируется как отсутствие различий, отсутствие влияние фактора, отсутствие эффекта, равенство нулю значений выборочных характеристик и т.п. Примером нулевой гипотезы в педагогике является утверждение о том, что различие в результатах выполнения двумя группами учащихся одной и той же контрольной работы вызвано лишь случайными причинами.

Другое проверяемое предположение (не всегда строго противоположное или обратное первому) называется конкурирующей или альтернативной гипотезой. Выдвинутая гипотеза может быть правильной или неправильной, поэ­тому возникает необходимость проверить ее. Так как проверку произво­дят статистическими методами, то данная проверка называется статистической.

Ошибки первого и второго уровня.

При проверке статистических гипотез возможны ошибки (ошибочные суждения) двух видов:

— можно отвергнуть нулевую гипотезу, когда она на самом деле верна (так называемая ошибка первого рода);

— можно принять нулевую гипотезу, когда она на самом деле не верна (так называемая ошибка второго рода).

Ошибка, состоящая в принятии нулевой гипотезы, когда она ложна, качественно отличается от ошибки, состоящей в отвержении гипотезы, когда она истинна. Эта разница очень существенна вследствие того, что различна значимость этих ошибок. Допустимая вероятность ошибки первого рода (Ркр) может быть равна 5% или 1% (0.05 или 0.01).

Уровень значимости.

Уровень значимости – это вероятность ошибки первого рода при принятии решения (вероятность ошибочного отклонения нулевой гипотезы).

Альтернативные гипотезы принимаются тогда и только тогда, когда опровергается нулевая гипотеза.

 

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.