![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Предположение о нормальном распределении случайной ошибки в рамках классической линейной регрессии и его следствия
Предложение об ошибках в классической модели формируются наиболее жестким и не всегда реалистичным путем: Предполагается, что ошибка ((e = 1 … N)) образует так называемый слабый белый шум – последовательность центрированных () и не коррелированных случайных величин с одинаковыми дисперсиями Свойство центрированности практически не является ограничением, так как при наличии постоянного регрессора среднее значение ошибки можно было бы включить в соответствующий коэффициент () В ряде случаев сделанные предложения об ошибках будут дополняться свойствами нормальности – случайный вектор e имеет нормальное распределение. Эту модель мы будем называть классической моделью с нормально распределительными ошибками. Многомерное нормальное распределение задается своим вектором и матрицей ковариации – здесь она имеет вид, где 1 – единичная матрица. Если компоненты вектора корелированы, следовательно, автоматически независимы, следовательно, ошибки в модели образуют последовательность независимых одинаково нормально распределенных случайных величин N (0;). Если каждая из величин нормально распределена, то вектор e, из них составленный, ну обязан быть нормально распределенным. Доверительные интервалы оценок параметров и проверка гипотез об их значимости. Доверительные интервалы параметров регрессии определяются следующим образом. Здесь td - значение t-статистики для выбранного уровня значимости d. Величина p=1-d называется доверительной вероятностью или уровнем надежности, нередко выражаемым в процентах. Это показатель, характеризует вероятность того, что теоретическое значение параметра регрессии будет находиться в полученном доверительном интервале. Тестирование на нормальность остатков. Тесты χ 2 Пирсона и Харке–Бера. Классическая модель линейной регрессии. Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение Доверительные интервалы оценок параметров и проверка гипотез об их значимости. Прогнозирование по регрессионной модели и его точность. Доверительные и интервалы прогноза. Проверка значимости коэффициентов и адекватности регрессии для множественной линейной регрессионной модели. Критерий Стьюдента. После того как уравнение линейной регрессии найдено, проводится оценка значимости как уравнения в целом, так и отдельных ее параметров. Оценка значимости уравнения регрессии в целом дается с помощью F-критерия Фишера. При этом выдвигается нулевая гипотеза, что коэффициент регрессии равен нулю, т.е. b=0, и, следовательно, фактор x не оказывает влияния на результат y.
|