Главная страница
Случайная страница
Разделы сайта
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
Начать продвижение сайта
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей:
— Сам записывает клиентов и напоминает им о визите;
— Персонализирует скидки, чаевые, кэшбэк и предоплаты;
— Увеличивает доходимость и помогает больше зарабатывать;
Начать пользоваться сервисом
Построение статистических оценок математического ожидания и дисперсии. Рассчитаем реализацию точечной оценки математического ожидания (выборочное среднее):
Точечные оценки
Рассчитаем реализацию точечной оценки математического ожидания (выборочное среднее):
= =296, 6 с.
Рассчитаем реализацию точечной оценки дисперсии (исправленную выборочную дисперсию):
= = 331, 0612 с2.
Интервальные оценки
Доверительная вероятность, с которой доверительный интервал накроет истинное значение параметра закона распределения случайной величины:
=1 – α = 0, 95.
Рассчитаем границы доверительного интервала для математического ожидания.
Реализация точечной оценки математического ожидания известна (рассчитана в предыдущем пункте).
Из таблиц распределения Стьюдента (Приложение 9) по значениям k =(n -1)=49 и α =0, 05 находим значение :
=2, 0085.
Границы доверительного интервала для математического ожидания :
= = 291, 3791,
= = 301, 8208.
Полученный доверительный интервал для математического ожидания:
= (291, 3791; 301, 8208).
Рассчитаем границы доверительного интервала для дисперсии.
Рассчитаем значения:
= 0, 025, = 0, 975.
Из таблицы - распределения, по входам k =(n – 1)=49 и =0, 025, k =(n – 1)=49 и =0, 975 найдем значения критических точек и :
=32, 357385,
= 71, 42019.
Границы доверительного интервала рассчитаем по формулам:
= 231, 770053,
= 511, 5698078.
Полученный доверительный интервал для дисперсии:
= (231, 770053; 511, 5698078).
|