Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Вычисление площадей поверхностей тел вращения. ⇐ ПредыдущаяСтр 8 из 8
Найдем площадь поверхности, полученной в результате вращения кривой АВ вокруг оси абсцисс. Пусть функция , непрерывно дифференцируема на отрезке . Через точки проведем прямые, параллельные оси ординат , а их точки пересечения с кривой обозначим через . Соединив эти точки хордами, получим ломаную . При ее вращении вокруг оси абсцисс получается поверхность, которая состоит из боковых поверхностей усеченных конусов, образованных вращением звеньев ломаной . Пусть площадь этой поверхности равна . Площадью поверхности тела вращения будем называть число , равное пределу последовательности площадей : . Площадь поверхности, описанной ломаной выразится следующим образом: , (10.7) где мы воспользовались формулой (10.5). Сумма (10.7) не является интегральной суммой для функции , (10.8) так как в слагаемом, соответствующем отрезку , фигурируют несколько точек этого отрезка, а именно , , . Однако можно доказать, что предел суммы (10.7) равен пределу интегральной суммы для функции (10.8), т. е. Таким образом, .
|