Главная страница
Случайная страница
Разделы сайта
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
Начать продвижение сайта
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей:
— Сам записывает клиентов и напоминает им о визите;
— Персонализирует скидки, чаевые, кэшбэк и предоплаты;
— Увеличивает доходимость и помогает больше зарабатывать;
Начать пользоваться сервисом
Определение неопределенного интеграла
В дифференциальном исчислении мы решали следующую основную задачу: по данной функции найти ее производную. Рассмотри обратную задачу: дана функция ; требуется найти такую функцию , производная которой равна , т.е.:
(8.1)
Определение 7.1. Функция называется первообразной от функции на отрезке , если во всех точках этого отрезка выполняется равенство (8.1).
Пример 8.1. Найти первообразную от функции . Из определения первообразной следует, что - первообразная функции , поскольку:
.
Задача отыскания по данной функции ее первообразной решается не однозначно. В рассмотренном примере первообразной для функции является не только функция , но и, к примеру, и и вообще (где - некоторая константа), что можно проверить дифференцированием данных функций.
Теорема 8.1. Если функция первообразная для функции на отрезке , то всякая другая первообразная для функции отличается от на постоянное слагаемое, т.е. может быть представлено в следующем виде:
(8.2)
Из данной теоремы следует, что выражение (7.2) охватывает совокупность всех первообразных от данной функции.
Введем теперь понятие неопределенного интеграла.
Определение 8.2. Если функция является первообразной для функции , выражение называется неопределенным интегралом и обозначается символом . Таким образом можно записать:
(8.3)
— подынтегральная функция;
— подынтегральное выражение;
— знак неопределенного интеграла;
— переменная интегрирования.
|