Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Вычисление длин дуг плоских кривых.
Пусть дана плоская кривая (рис. 10.1), уравнение которой , , где — непрерывно дифференцируемая функция на отрезке . Разобьем отрезок точками , на частей равной длины. Через точки деления проведем прямые, параллельные оси ординат . Точки пересечения этих прямых с кривой обозначим через . Соединив эти точки хордами, получим ломаную , вписанную в кривую . Пусть периметр этой ломаной равен . Длиной дуги будем называть число , равное пределу последовательности периметров : Выведем формулу для вычисления длины дуги. Для этого сначала найдем периметр ломаной . Точка с координатами и и точка с координатами и являются концами го звена ломаной. Длину го звена вычислим по формуле расстояния между двумя точками плоскости: . (10.3) Учитывая, что – непрерывная дифференцируемая функция на отрезке , по формуле Лагранжа имеем , (10.4)
где — некоторая точка интервала . Подставив выражение (10.4) в формулу (10.3), получим: , (10.5)
где . Значит, периметр ломаной равен следующей сумме: . Получили интегральную сумму для непрерывной функции на отрезке . Так как предел этой суммы при n → ∞ существует, то согласно определению находим . Таким образом,
|