Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Вычисление площадей плоских фигур.






    Определенный интеграл от неотрицательной непрерывной функции равен площади соответствующей криволинейной трапеции. В этом состоит геометрический смысл определенного интеграла, на этом основано его применение к вычислению площадей плоских фигур.

    Площадь криволинейной трапеции, т. е. фигуры, ограниченной графиком неотрицательной непрерывной функции , , отрезком оси абсцисс и отрезками прямых , , вычисляется по формуле

    . (10.1)

    Если функция конечное раз меняет знак на отрезке , то интеграл по всему отрезку на сумму интегралов по частичным отрезкам. Интеграл будет положителен на тех отрезках, где , и отрицателен там, где . Интеграл по всему отрезку даст разность площадей, лежащих выше и ниже оси. Для того, чтобы получить сумму площадей, необходимо найти сумму абсолютных величин интегралов по указанным выше отрезкам или вычислить интеграл:

    (10.2)

    Пример 10.1.

    Вычислить площадь фигуры, ограниченной косинусоидой , осью и прямыми .






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.