![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Координаты.
Возьмем произвольную прямую, выберем единицу масштаба и положительное направление. Зафиксируем на прямой (принято называть такую прямую осью) произвольную точку О. Расстояние от нее до другой точки определится числом единиц длины в соответствующем отрезке. Знак числа показывает, в каком направлении от точки О нужно откладывать отрезок, чтобы попасть в соответствующую точку (точки А1 (5) и А2 (–4) на рис. 1.1, например). Число, стоящее в скобках, и есть координата. Этот пример иллюстрирует понятие одномерного пространства R и одномерной системы координат.
рис.1.1.
Проекции точки Mn на оси Ох и Оу (точки xn и yn соответственно, рис. 1.2) позволяют определить координаты точки Mn как числа, выражающие длины отрезков Oхn и Oуn (xn – абсцисса, yn – ордината точки Mn). Символически положение точки Mn с известными координатами xn и yn записывается в виде Mn(xn, yn), произвольной точки – М(x, y), где x и y – текущие координаты. Рассмотрим еще одну систему координат на плоскости – полярную. Она определяется заданием точки О (полюса), полярной оси, проходящей через нее, и направлением отсчета угла j между полярной осью и отрезком, соединяющим полюс О с произвольной точкой М плоскости. Полярными координатами точки М называют пару чисел r и j, где r – длина отрезка ОМ, а j – упомянутый угол в радианах.(Принятое направление отсчёта - против часовой стрелки от положительного направления оси.) Вернемся к рис. 1.2. Примем за полярную ось Oх. Для установления связи между декартовыми и полярными координатами точки Mn достаточно рассмотреть прямоугольный треугольник OMnхn. Легко видеть, что Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение
Аналогично тому, как это делалось для плоскости, вводятся декартовы координаты в трехмерном пространстве R3. Задается единица масштаба и три взаимно перпендикулярные оси Oх, Oу и Oz, пересекающиеся в точке О. Положение точки однозначно определяется тремя числами – абсциссой x, ординатой y и аппликатой z (рис. 1.3) (к осям (координатам) x и y «добавили» ось (координату) z).
Контрольные вопросы. 1) Как определяются декартовы координаты точки на плоскости? 2) Чем отличаются друг от друга декартовы координаты двух точек, симметричных относительно а) оси ОХ, б) оси ОУ, в) начала координат? 3) Напишите формулы преобразования координат а) при параллельном переносе системы координат; б) при повороте системы координат. 4) Какой вид примет формула, по которой определяется расстояние между двумя точками, если: а) точки имеют одинаковые ординаты, но различные абсциссы; б) точки имеют одинаковые абсциссы, но различные ординаты; в) одна из точек совпадает с началом координат? 5) Как определяется декартова прямоугольная система координат в пространстве? Как определяются координаты точки в пространстве?
|