Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта
  • Конкретизация задачи синтеза. Выбор критериев близости






     

    После того как определена структурная схема фильтра ПАВ, выбраны типы используемых преобразователей и модели, описы­вающие работу последних, следующим этапом проектирования является синтез ВШП по заданным характеристикам и установлен­ным критериям близости.

    В настоящей главе рассматриваются методы синтеза эквидис­тантных аподизованных ВШП по характеристическим параметрам, определяемым только структурой преобразователей. Синтез по ра­бочим параметрам с учетом нагрузок, отражений, эффектов второ­го порядка и т. д. описывается в следующих главах.

    Как уже указывалось, требования к характеристикам фильт­ров обычно задаются в частотной области. Считается, что фильтр минимально-фазового типа определен в частотной области, если задана его передаточная функция . Для фильт­ра неминимально-фазового типа необходимо дополнительное ука­зание на связь АЧХ и ФЧХ. При этом характеристики задаются на интервале 2p F, ограниченном обычно частотами 0£ w£ ws/2.

    При синтезе ВШП и фильтров ПАВ по требуемым характерис­тикам возникают два типа задач. В задачах первого типа необхо­димо, чтобы ВШП имел АЧХ, близкую к заданной функции, т. е.

    (3.1)

    для 0£ w£ ws/2 требования к ФЧХ опускаются.

    В задачах второго типа требуется определить реализуемую пе­редаточную функцию ВШП H (iw) так, чтобы одновременно выпол­нялись приближенные равенства для АЧХ и ФЧХ (без учета ли­нейного члена последней)

    (3.2)

    (3.3)

    при 0£ w£ ws/2.

    Последовательность коэффициентов ап импульсной характерис­тики фильтра можно выразить в виде суммы двух последователь­ностей коэффициентов a п с четной симметрией и b n с нечетной симметрией. Например, когда общее число A коэффициентов ап четное, т. е. A= 2 N, то

    an =a n +b n для n =0, 1, 2, …, N -1

    и

    an =a n +b n для n = N,..., А— 1 при m = A —1— п.

    В результате подстановки этих соотношений в выражение для передаточной функции ВШП получаем

    Аналогично можно получить уравнение передаточной функции при нечетном A =2 N+ 1 (см. табл. 2.5). Для передаточной функ­ции произвольного вида экспоненциальный множитель определяет линейный член ФЧХ, а выражение в фигурных скобках — наложен­ную девиацию фазы Dqи(w). Таким образом, наклон ФЧХ зависит от числа электродов ВШП, а ее нелинейный член — от коэффициен­тов импульсной характеристики, т. е. взвешивания электродов.

    В общем случае АЧХ преобразователя представляет собой нели­нейную функцию частоты

    (3.4)

    поэтому непосредственная аппроксимация заданной передаточной функции H 3(i w) выражением (3.4) приводит к сложной задаче не­линейного программирования.

    Чтобы прийти к решению линейной задачи, необходимо от за­данных амплитудно-частотной A 3(w) и фазочастотной q3(w) харак­теристик перейти к действительной и мнимой частям передаточ­ной функции

    R 3(w)= A 3(w)cosq3(w) и I 3(w)= A 3(w)sinq3(w). (3.5)

    Тогда для выполнения приближенного равенства необходимо потребовать выполне­ния новых приближений

    и (3.6)

    при 0£ w£ ws/2,

    где

    и

    (3.7)

    Аппроксимационные задачи, следующие из (3.6), линейны, по­скольку R (w) и I (w) линейно зависят от неизвестных коэффици­ентов an.

    Поскольку аппроксимация действительной R (w) и мнимой iI (w) функциями производится отдельно, то с точки зрения ап­проксимации задачи синтеза первого и второго типа идентичны. Поэтому в дальнейшем будет рассматриваться более общая зада­ча второго типа.

    Для определения четной и нечетной частей синфазной и орто­гональной составляющих дискретизированной импульсной харак­теристики, описанной комплексными коэффициентами ап, необходимо разложить R (w) и I (w) на сумму четной и нечетной отно­сительно wср или W=0 частей, например R (W)= R чт(W)+ R нч(W),

    где и [55], и найти коэффициенты a n и b n соответствующих этим частям импульсных характеристик фильтров нижних частот из соотноше­ний, приведенных в табл. 2.5. Схема нахождения этих коэффици­ентов описана в § 1.3, 1.4 и иллюстрируется на рис. 1.3, 1.4.

    Методы решения сформулированных аппроксимационных за­дач определяются принятым критерием близости заданных и реа­лизуемых характеристик. Для фильтров величина и точные грани­цы отклонения реализуемой функции R (w) или I (w) важнее, чем средняя ошибка, поэтому при их проектировании необходимо ис­пользовать чебышевский критерий близости [21], согласно которо­му обеспечивается равномерное приближение реализуемой функ­ции к заданной R 3(w) или I 3(w), т. е. когда

    (3.8)

    где E 1(w) и E 2(w)—заданные функции ошибки аппроксимации.

    Если же специфичные особенности задач таковы, что на одних участках интервала 2p F допускаются значительные отличия функ­ций R 3(w) и R (w) или I 3(w) и I (w), а на других участках эти от­личия должны быть малы, то можно следующим образом сформу­лировать линейную задачу взвешенной чебышевской аппроксима­ции: требуется определить коэффициенты a о, а 1 ,..., aA -1 (A —за­данное число) так, чтобы минимизировать максимальную ошибку E (w), т. е.

    (3.9)

    где W o(w) весовая функция ошибки.

    Иногда при расчете фильтров используется и квадратический критерий близости [21], согласно которому минимизируется среднеквадратическая ошибка E cp(w). Этот критерий часто использу­ется при синтезе фильтров для весовой обработки импульсных сиг­налов, когда важно минимизировать потери энергии на обработку, а искажение формы импульса не играет большой роли.

    Задача синтеза фильтров ПАВ с использованием как чебышевского, так и квадратического критерия в строгой постановке прак­тически не решена. Наиболее близкими к синтезу являются метод расчета с аппроксимацией треугольными функциями, метод «стро­ительных блоков» и итерационный метод [3, 4].






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.